ProtoTank/Engine/Utils/3DMaths.inl

2070 lines
71 KiB
C++

#pragma once
inline void M3D_ScalarSinCos(float* pSin, float* pCos, float Value) noexcept {
// Map Value to y in [-pi,pi], x = 2*pi*quotient + remainder.
float quotient = M3D_1DIV2PI * Value;
if (Value >= 0.0f)
quotient = static_cast<float>(static_cast<int>(quotient + 0.5f));
else
quotient = static_cast<float>(static_cast<int>(quotient - 0.5f));
float y = Value - M3D_2PI * quotient;
// Map y to [-pi/2,pi/2] with sin(y) = sin(Value).
float sign;
if (y > M3D_PIDIV2) {
y = M3D_PI - y;
sign = -1.0f;
} else if (y < -M3D_PIDIV2) {
y = -M3D_PI - y;
sign = -1.0f;
} else {
sign = +1.0f;
}
float y2 = y * y;
// 11-degree minimax approximation
*pSin = (((((-2.3889859e-08f * y2 + 2.7525562e-06f) * y2 - 0.00019840874f) * y2 + 0.0083333310f) * y2 - 0.16666667f) * y2 + 1.0f) * y;
// 10-degree minimax approximation
float p = ((((-2.6051615e-07f * y2 + 2.4760495e-05f) * y2 - 0.0013888378f) * y2 + 0.041666638f) * y2 - 0.5f) * y2 + 1.0f;
*pCos = sign * p;
}
/* -------------------------------------------------------------------------------------------------------------------------- */
inline M3D_MATRIX::M3D_MATRIX(
float f00, float f01, float f02, float f03,
float f10, float f11, float f12, float f13,
float f20, float f21, float f22, float f23,
float f30, float f31, float f32, float f33
) noexcept {
rows[0] = M3D_V4Set(f00, f01, f02, f03);
rows[1] = M3D_V4Set(f10, f11, f12, f13);
rows[2] = M3D_V4Set(f20, f21, f22, f23);
rows[3] = M3D_V4Set(f30, f31, f32, f33);
}
inline M3D_MATRIX M3D_MATRIX::operator- () const noexcept {
M3D_MATRIX ret;
ret.rows[0] = M3D_V4Negate(rows[0]);
ret.rows[1] = M3D_V4Negate(rows[1]);
ret.rows[2] = M3D_V4Negate(rows[2]);
ret.rows[3] = M3D_V4Negate(rows[3]);
return ret;
}
inline M3D_MATRIX& M3D_MATRIX::operator+= (M3D_MATRIX M) noexcept {
rows[0] = M3D_V4Add(rows[0], M.rows[0]);
rows[1] = M3D_V4Add(rows[1], M.rows[1]);
rows[2] = M3D_V4Add(rows[2], M.rows[2]);
rows[3] = M3D_V4Add(rows[3], M.rows[3]);
return *this;
}
inline M3D_MATRIX M3D_MATRIX::operator+ (M3D_MATRIX M) const noexcept {
M3D_MATRIX ret;
ret.rows[0] = M3D_V4Add(rows[0], M.rows[0]);
ret.rows[1] = M3D_V4Add(rows[1], M.rows[1]);
ret.rows[2] = M3D_V4Add(rows[2], M.rows[2]);
ret.rows[3] = M3D_V4Add(rows[3], M.rows[3]);
return ret;
}
inline M3D_MATRIX& M3D_MATRIX::operator-= (M3D_MATRIX M) noexcept {
rows[0] = M3D_V4Subtract(rows[0], M.rows[0]);
rows[1] = M3D_V4Subtract(rows[1], M.rows[1]);
rows[2] = M3D_V4Subtract(rows[2], M.rows[2]);
rows[3] = M3D_V4Subtract(rows[3], M.rows[3]);
return *this;
}
inline M3D_MATRIX M3D_MATRIX::operator- (M3D_MATRIX M) const noexcept {
M3D_MATRIX ret;
ret.rows[0] = M3D_V4Subtract(rows[0], M.rows[0]);
ret.rows[1] = M3D_V4Subtract(rows[1], M.rows[1]);
ret.rows[2] = M3D_V4Subtract(rows[2], M.rows[2]);
ret.rows[3] = M3D_V4Subtract(rows[3], M.rows[3]);
return ret;
}
inline M3D_MATRIX& M3D_MATRIX::operator*=(M3D_MATRIX M) noexcept {
*this = M3D_MMultiply(*this, M);
return *this;
}
inline M3D_MATRIX M3D_MATRIX::operator*(M3D_MATRIX M) const noexcept {
return M3D_MMultiply(*this, M);
}
inline M3D_MATRIX& M3D_MATRIX::operator*= (float S) noexcept {
rows[0] = M3D_V4Scale(rows[0], S);
rows[1] = M3D_V4Scale(rows[1], S);
rows[2] = M3D_V4Scale(rows[2], S);
rows[3] = M3D_V4Scale(rows[3], S);
return *this;
}
inline M3D_MATRIX M3D_MATRIX::operator* (float S) const noexcept {
M3D_MATRIX ret;
ret.rows[0] = M3D_V4Scale(rows[0], S);
ret.rows[1] = M3D_V4Scale(rows[1], S);
ret.rows[2] = M3D_V4Scale(rows[2], S);
ret.rows[3] = M3D_V4Scale(rows[3], S);
return ret;
}
inline M3D_MATRIX operator* (float S, M3D_MATRIX M) noexcept {
M3D_MATRIX ret;
ret.rows[0] = M3D_V4Scale(M.rows[0], S);
ret.rows[1] = M3D_V4Scale(M.rows[1], S);
ret.rows[2] = M3D_V4Scale(M.rows[2], S);
ret.rows[3] = M3D_V4Scale(M.rows[3], S);
return ret;
}
inline M3D_MATRIX& M3D_MATRIX::operator/= (float S) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_VECTOR vS = M3D_V4Replicate(S);
rows[0] = M3D_V4Divide(rows[0], vS);
rows[1] = M3D_V4Divide(rows[1], vS);
rows[2] = M3D_V4Divide(rows[2], vS);
rows[3] = M3D_V4Divide(rows[3], vS);
return *this;
#else
__m128 vS = _mm_set_ps1(S);
rows[0] = _mm_div_ps(rows[0], vS);
rows[1] = _mm_div_ps(rows[1], vS);
rows[2] = _mm_div_ps(rows[2], vS);
rows[3] = _mm_div_ps(rows[3], vS);
return *this;
#endif
}
inline M3D_MATRIX M3D_MATRIX::operator/ (float S) const noexcept {
#ifdef DISABLE_INTRINSICS
M3D_VECTOR vS = M3D_V4Replicate(S);
M3D_MATRIX ret;
ret.rows[0] = M3D_V4Divide(rows[0], vS);
ret.rows[1] = M3D_V4Divide(rows[1], vS);
ret.rows[2] = M3D_V4Divide(rows[2], vS);
ret.rows[3] = M3D_V4Divide(rows[3], vS);
return ret;
#else
__m128 vS = _mm_set_ps1(S);
M3D_MATRIX ret;
ret.rows[0] = _mm_div_ps(rows[0], vS);
ret.rows[1] = _mm_div_ps(rows[1], vS);
ret.rows[2] = _mm_div_ps(rows[2], vS);
ret.rows[3] = _mm_div_ps(rows[3], vS);
return ret;
#endif
}
/* -------------------------------------------------------------------------------------------------------------------------- */
inline M3D_VECTOR M3D_V4LoadF3(const M3D_F3* src) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_VECTOR V;
V.v4f[0] = src->x;
V.v4f[1] = src->y;
V.v4f[2] = src->z;
V.v4f[3] = 0.f;
return V;
/*
#elif defined(SSE4_INTRINSICS)
__m128 xy = _mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(src)));
__m128 z = _mm_load_ss(&src->z);
return _mm_insert_ps(xy, z, 0x20);
*/
#else
__m128 xy = _mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(src)));
__m128 z = _mm_load_ss(&src->z);
return _mm_movelh_ps(xy, z);
#endif
}
inline M3D_VECTOR M3D_V4LoadF3A(const M3D_F3A* src) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_VECTOR V;
V.v4f[0] = src->x;
V.v4f[1] = src->y;
V.v4f[2] = src->z;
V.v4f[3] = 0.f;
return V;
#else
__m128 V = _mm_load_ps(&src->x); // Reads an extra float which is zero'd
return _mm_and_ps(V, M3D_MMask3);
#endif
}
inline void M3D_V4StoreF3(M3D_F3* dst, M3D_VECTOR V) noexcept {
#ifdef DISABLE_INTRINSICS
dst->x = V.v4f[0];
dst->y = V.v4f[1];
dst->z = V.v4f[2];
/*
#elif defined(SSE4_INTRINSICS)
*reinterpret_cast<int*>(&dst->x) = _mm_extract_ps(V, 0);
*reinterpret_cast<int*>(&dst->y) = _mm_extract_ps(V, 1);
*reinterpret_cast<int*>(&dst->z) = _mm_extract_ps(V, 2);
*/
#else
_mm_store_sd(reinterpret_cast<double*>(dst), _mm_castps_pd(V));
__m128 z = M3D_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
_mm_store_ss(&dst->z, z);
#endif
}
inline void M3D_V4StoreF3A(M3D_F3A* dst, M3D_VECTOR V) noexcept {
#ifdef DISABLE_INTRINSICS
dst->x = V.v4f[0];
dst->y = V.v4f[1];
dst->z = V.v4f[2];
/*
#elif defined(SSE4_INTRINSICS)
_mm_store_sd(reinterpret_cast<double*>(dst), _mm_castps_pd(V));
*reinterpret_cast<int*>(&dst->z) = _mm_extract_ps(V, 2);
*/
#else
_mm_store_sd(reinterpret_cast<double*>(dst), _mm_castps_pd(V));
__m128 z = _mm_movehl_ps(V, V);
_mm_store_ss(&dst->z, z);
#endif
}
inline M3D_VECTOR M3D_V4LoadF4(const M3D_F4* src) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_VECTOR V;
V.v4f[0] = src->x;
V.v4f[1] = src->y;
V.v4f[2] = src->z;
V.v4f[3] = src->w;
return V;
#else
return _mm_loadu_ps(&src->x);
#endif
}
inline M3D_VECTOR M3D_V4LoadV4A(const M3D_F4A* src) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_VECTOR V;
V.v4f[0] = src->x;
V.v4f[1] = src->y;
V.v4f[2] = src->z;
V.v4f[3] = src->w;
return V;
#else
return _mm_load_ps(&src->x);
#endif
}
inline void M3D_V4StoreF4(M3D_F4* dst, M3D_VECTOR V) noexcept {
#ifdef DISABLE_INTRINSICS
dst->x = V.v4f[0];
dst->y = V.v4f[1];
dst->z = V.v4f[2];
dst->w = V.v4f[3];
#else
_mm_storeu_ps(&dst->x, V);
#endif
}
inline void M3D_V4StoreF4A(M3D_F4A* dst, M3D_VECTOR V) noexcept {
#ifdef DISABLE_INTRINSICS
dst->x = V.v4f[0];
dst->y = V.v4f[1];
dst->z = V.v4f[2];
dst->w = V.v4f[3];
#else
_mm_store_ps(&dst->x, V);
#endif
}
inline M3D_MATRIX M3D_V4LoadF4x4(const M3D_F4X4* src) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_MATRIX ret;
ret.rows[0].v4f[0] = src->mat[0][0];
ret.rows[0].v4f[1] = src->mat[0][1];
ret.rows[0].v4f[2] = src->mat[0][2];
ret.rows[0].v4f[3] = src->mat[0][3];
ret.rows[1].v4f[0] = src->mat[1][0];
ret.rows[1].v4f[1] = src->mat[1][1];
ret.rows[1].v4f[2] = src->mat[1][2];
ret.rows[1].v4f[3] = src->mat[1][3];
ret.rows[2].v4f[0] = src->mat[2][0];
ret.rows[2].v4f[1] = src->mat[2][1];
ret.rows[2].v4f[2] = src->mat[2][2];
ret.rows[2].v4f[3] = src->mat[2][3];
ret.rows[3].v4f[0] = src->mat[3][0];
ret.rows[3].v4f[1] = src->mat[3][1];
ret.rows[3].v4f[2] = src->mat[3][2];
ret.rows[3].v4f[3] = src->mat[3][3];
return ret;
#else
M3D_MATRIX ret;
ret.rows[0] = _mm_loadu_ps(&src->_00);
ret.rows[1] = _mm_loadu_ps(&src->_10);
ret.rows[2] = _mm_loadu_ps(&src->_20);
ret.rows[3] = _mm_loadu_ps(&src->_30);
return ret;
#endif
}
inline M3D_MATRIX M3D_V4LoadF4x4A(const M3D_F4X4A* src) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_MATRIX ret;
ret.rows[0].v4f[0] = src->mat[0][0];
ret.rows[0].v4f[1] = src->mat[0][1];
ret.rows[0].v4f[2] = src->mat[0][2];
ret.rows[0].v4f[3] = src->mat[0][3];
ret.rows[1].v4f[0] = src->mat[1][0];
ret.rows[1].v4f[1] = src->mat[1][1];
ret.rows[1].v4f[2] = src->mat[1][2];
ret.rows[1].v4f[3] = src->mat[1][3];
ret.rows[2].v4f[0] = src->mat[2][0];
ret.rows[2].v4f[1] = src->mat[2][1];
ret.rows[2].v4f[2] = src->mat[2][2];
ret.rows[2].v4f[3] = src->mat[2][3];
ret.rows[3].v4f[0] = src->mat[3][0];
ret.rows[3].v4f[1] = src->mat[3][1];
ret.rows[3].v4f[2] = src->mat[3][2];
ret.rows[3].v4f[3] = src->mat[3][3];
return ret;
#else
M3D_MATRIX ret;
ret.rows[0] = _mm_load_ps(&src->_00);
ret.rows[1] = _mm_load_ps(&src->_10);
ret.rows[2] = _mm_load_ps(&src->_20);
ret.rows[3] = _mm_load_ps(&src->_30);
return ret;
#endif
}
inline void M3D_V4StoreF4x4(M3D_F4X4* dst, M3D_MATRIX M) noexcept {
#ifdef DISABLE_INTRINSICS
dst->mat[0][0] = M.rows[0].v4f[0];
dst->mat[0][1] = M.rows[0].v4f[1];
dst->mat[0][2] = M.rows[0].v4f[2];
dst->mat[0][3] = M.rows[0].v4f[3];
dst->mat[1][0] = M.rows[1].v4f[0];
dst->mat[1][1] = M.rows[1].v4f[1];
dst->mat[1][2] = M.rows[1].v4f[2];
dst->mat[1][3] = M.rows[1].v4f[3];
dst->mat[2][0] = M.rows[2].v4f[0];
dst->mat[2][1] = M.rows[2].v4f[1];
dst->mat[2][2] = M.rows[2].v4f[2];
dst->mat[2][3] = M.rows[2].v4f[3];
dst->mat[3][0] = M.rows[3].v4f[0];
dst->mat[3][1] = M.rows[3].v4f[1];
dst->mat[3][2] = M.rows[3].v4f[2];
dst->mat[3][3] = M.rows[3].v4f[3];
#else
_mm_storeu_ps(&dst->_00, M.rows[0]);
_mm_storeu_ps(&dst->_10, M.rows[1]);
_mm_storeu_ps(&dst->_20, M.rows[2]);
_mm_storeu_ps(&dst->_30, M.rows[3]);
#endif
}
inline void M3D_V4StoreF4x4A(M3D_F4X4A* dst, M3D_MATRIX M) noexcept {
#ifdef DISABLE_INTRINSICS
dst->mat[0][0] = M.rows[0].v4f[0];
dst->mat[0][1] = M.rows[0].v4f[1];
dst->mat[0][2] = M.rows[0].v4f[2];
dst->mat[0][3] = M.rows[0].v4f[3];
dst->mat[1][0] = M.rows[1].v4f[0];
dst->mat[1][1] = M.rows[1].v4f[1];
dst->mat[1][2] = M.rows[1].v4f[2];
dst->mat[1][3] = M.rows[1].v4f[3];
dst->mat[2][0] = M.rows[2].v4f[0];
dst->mat[2][1] = M.rows[2].v4f[1];
dst->mat[2][2] = M.rows[2].v4f[2];
dst->mat[2][3] = M.rows[2].v4f[3];
dst->mat[3][0] = M.rows[3].v4f[0];
dst->mat[3][1] = M.rows[3].v4f[1];
dst->mat[3][2] = M.rows[3].v4f[2];
dst->mat[3][3] = M.rows[3].v4f[3];
#else
_mm_store_ps(&dst->_00, M.rows[0]);
_mm_store_ps(&dst->_10, M.rows[1]);
_mm_store_ps(&dst->_20, M.rows[2]);
_mm_store_ps(&dst->_30, M.rows[3]);
#endif
}
/* -------------------------------------------------------------------------------------------------------------------------- */
inline M3D_VECTOR M3D_V4Set(float x, float y, float z, float w) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_V4F32 ret = {{{x, y, z, w}}};
return ret.v;
#else
return _mm_set_ps(w, z, y, x);
#endif
}
inline M3D_VECTOR M3D_V4Negate(M3D_VECTOR V) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_V4F32 ret = {{{
-V.v4f[0],
-V.v4f[1],
-V.v4f[2],
-V.v4f[3]
}}};
return ret.v;
#else
M3D_VECTOR Z = _mm_setzero_ps();
return _mm_sub_ps(Z, V);
#endif
}
inline M3D_VECTOR M3D_V4Replicate(float val) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_V4F32 ret;
ret.f[0] =
ret.f[1] =
ret.f[2] =
ret.f[3] = val;
return ret.v;
#else
return _mm_set_ps1(val);
#endif
}
inline float M3D_V4GetX(M3D_VECTOR V) noexcept {
#ifdef DISABLE_INTRINSICS
return V.v4f[0];
#else
return _mm_cvtss_f32(V);
#endif
}
inline float M3D_V4GetY(M3D_VECTOR V) noexcept {
#ifdef DISABLE_INTRINSICS
return V.v4f[1];
#else
M3D_VECTOR vTemp = M3D_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
return _mm_cvtss_f32(vTemp);
#endif
}
inline float M3D_V4GetZ(M3D_VECTOR V) noexcept {
#ifdef DISABLE_INTRINSICS
return V.v4f[2];
#else
M3D_VECTOR vTemp = M3D_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
return _mm_cvtss_f32(vTemp);
#endif
}
inline float M3D_V4GetW(M3D_VECTOR V) noexcept {
#ifdef DISABLE_INTRINSICS
return V.v4f[3];
#else
M3D_VECTOR vTemp = M3D_PERMUTE_PS(V, _MM_SHUFFLE(3, 3, 3, 3));
return _mm_cvtss_f32(vTemp);
#endif
}
inline M3D_VECTOR M3D_V4SplatX(M3D_VECTOR V) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_V4F32 vResult;
vResult.f[0] =
vResult.f[1] =
vResult.f[2] =
vResult.f[3] = V.v4f[0];
return vResult.v;
#elif defined(AVX2_INTRINSICS) && defined(FAVOR_INTEL)
return _mm_broadcastss_ps(V);
#else
return M3D_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
#endif
}
inline M3D_VECTOR M3D_V4SplatY(M3D_VECTOR V) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_V4F32 vResult;
vResult.f[0] =
vResult.f[1] =
vResult.f[2] =
vResult.f[3] = V.v4f[1];
return vResult.v;
#else
return M3D_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
#endif
}
inline M3D_VECTOR M3D_V4SplatZ(M3D_VECTOR V) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_V4F32 vResult;
vResult.f[0] =
vResult.f[1] =
vResult.f[2] =
vResult.f[3] = V.v4f[2];
return vResult.v;
#else
return M3D_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
#endif
}
inline M3D_VECTOR M3D_V4SplatW(M3D_VECTOR V) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_V4F32 vResult;
vResult.f[0] =
vResult.f[1] =
vResult.f[2] =
vResult.f[3] = V.v4f[3];
return vResult.v;
#else
return M3D_PERMUTE_PS(V, _MM_SHUFFLE(3, 3, 3, 3));
#endif
}
inline M3D_VECTOR M3D_V4Add(M3D_VECTOR V1, M3D_VECTOR V2) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_V4F32 ret = {{{
V1.v4f[0] + V2.v4f[0],
V1.v4f[1] + V2.v4f[1],
V1.v4f[2] + V2.v4f[2],
V1.v4f[3] + V2.v4f[3]
}}};
return ret.v;
#else
return _mm_add_ps(V1, V2);
#endif
}
inline M3D_VECTOR M3D_V4Subtract(M3D_VECTOR V1, M3D_VECTOR V2) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_V4F32 ret = {{{
V1.v4f[0] - V2.v4f[0],
V1.v4f[1] - V2.v4f[1],
V1.v4f[2] - V2.v4f[2],
V1.v4f[3] - V2.v4f[3]
}}};
return ret.v;
#else
return _mm_sub_ps(V1, V2);
#endif
}
inline M3D_VECTOR M3D_V4MultiplyAdd(M3D_VECTOR V1, M3D_VECTOR V2, M3D_VECTOR V3) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_V4F32 ret = {{{
V1.v4f[0] * V2.v4f[0] + V3.v4f[0],
V1.v4f[1] * V2.v4f[1] + V3.v4f[1],
V1.v4f[2] * V2.v4f[2] + V3.v4f[2],
V1.v4f[3] * V2.v4f[3] + V3.v4f[3]
}}};
return ret.v;
#else
return M3D_FMADD_PS(V1, V2, V3);
#endif
}
inline M3D_VECTOR M3D_V4Divide(M3D_VECTOR V1, M3D_VECTOR V2) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_V4F32 ret = {{{
V1.v4f[0] / V2.v4f[0],
V1.v4f[1] / V2.v4f[1],
V1.v4f[2] / V2.v4f[2],
V1.v4f[3] / V2.v4f[3]
}}};
return ret.v;
#else
return _mm_div_ps(V1, V2);
#endif
}
inline M3D_VECTOR M3D_V4Scale(M3D_VECTOR V, float scale) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_V4F32 ret = {{{
V.v4f[0] * scale,
V.v4f[1] * scale,
V.v4f[2] * scale,
V.v4f[3] * scale
}}};
return ret.v;
#else
M3D_VECTOR ret = _mm_set_ps1(scale);
return _mm_mul_ps(ret, V);
#endif
}
inline M3D_VECTOR M3D_V4Select(M3D_VECTOR V1, M3D_VECTOR V2, M3D_VECTOR Control) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_V4U32 ret = {{{
(V1.v4u[0] & ~Control.v4u[0]) | (V2.v4u[0] & Control.v4u[0]),
(V1.v4u[1] & ~Control.v4u[1]) | (V2.v4u[1] & Control.v4u[1]),
(V1.v4u[2] & ~Control.v4u[2]) | (V2.v4u[2] & Control.v4u[2]),
(V1.v4u[3] & ~Control.v4u[3]) | (V2.v4u[3] & Control.v4u[3]),
}}};
return ret.v;
#else
M3D_VECTOR vTemp1 = _mm_andnot_ps(Control, V1);
M3D_VECTOR vTemp2 = _mm_and_ps(V2, Control);
return _mm_or_ps(vTemp1, vTemp2);
#endif
}
inline M3D_VECTOR M3D_V4MergeXY(M3D_VECTOR V1, M3D_VECTOR V2) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_V4U32 Result = { { {
V1.v4u[0],
V2.v4u[0],
V1.v4u[1],
V2.v4u[1],
} } };
return Result.v;
#else
return _mm_unpacklo_ps(V1, V2);
#endif
}
inline M3D_VECTOR M3D_V4MergeZW(M3D_VECTOR V1, M3D_VECTOR V2) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_V4U32 Result = { { {
V1.v4u[2],
V2.v4u[2],
V1.v4u[3],
V2.v4u[3]
} } };
return Result.v;
#else
return _mm_unpackhi_ps(V1, V2);
#endif
}
inline M3D_VECTOR M3D_V4Sqrt(M3D_VECTOR V) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_V4F32 Result = { { {
sqrtf(V.v4f[0]),
sqrtf(V.v4f[1]),
sqrtf(V.v4f[2]),
sqrtf(V.v4f[3])
} } };
return Result.v;
#else
return _mm_sqrt_ps(V);
#endif
}
inline M3D_VECTOR M3D_V3Dot(M3D_VECTOR V1, M3D_VECTOR V2) noexcept {
#ifdef DISABLE_INTRINSICS
float fValue = V1.v4f[0] * V2.v4f[0] + V1.v4f[1] * V2.v4f[1] + V1.v4f[2] * V2.v4f[2];
M3D_V4F32 vResult;
vResult.f[0] =
vResult.f[1] =
vResult.f[2] =
vResult.f[3] = fValue;
return vResult.v;
#elif defined(SSE4_INTRINSICS)
return _mm_dp_ps(V1, V2, 0x7f);
#elif defined(SSE3_INTRINSICS)
M3D_VECTOR vTemp = _mm_mul_ps(V1, V2);
vTemp = _mm_and_ps(vTemp, g_XMMask3);
vTemp = _mm_hadd_ps(vTemp, vTemp);
return _mm_hadd_ps(vTemp, vTemp);
#else
// Perform the dot product
M3D_VECTOR vDot = _mm_mul_ps(V1, V2);
// x=Dot.v4f[1], y=Dot.v4f[2]
M3D_VECTOR vTemp = M3D_PERMUTE_PS(vDot, _MM_SHUFFLE(2, 1, 2, 1));
// Result.v4f[0] = x+y
vDot = _mm_add_ss(vDot, vTemp);
// x=Dot.v4f[2]
vTemp = M3D_PERMUTE_PS(vTemp, _MM_SHUFFLE(1, 1, 1, 1));
// Result.v4f[0] = (x+y)+z
vDot = _mm_add_ss(vDot, vTemp);
// Splat x
return M3D_PERMUTE_PS(vDot, _MM_SHUFFLE(0, 0, 0, 0));
#endif
}
inline M3D_VECTOR M3D_V3Cross(M3D_VECTOR V1, M3D_VECTOR V2) noexcept {
// [ V1.y*V2.z - V1.z*V2.y, V1.z*V2.x - V1.x*V2.z, V1.x*V2.y - V1.y*V2.x ]
#ifdef DISABLE_INTRINSICS
M3D_V4F32 vResult = {{{
(V1.v4f[1] * V2.v4f[2]) - (V1.v4f[2] * V2.v4f[1]),
(V1.v4f[2] * V2.v4f[0]) - (V1.v4f[0] * V2.v4f[2]),
(V1.v4f[0] * V2.v4f[1]) - (V1.v4f[1] * V2.v4f[0]),
0.0f
}}};
return vResult.v;
#else
// y1,z1,x1,w1
M3D_VECTOR vTemp1 = M3D_PERMUTE_PS(V1, _MM_SHUFFLE(3, 0, 2, 1));
// z2,x2,y2,w2
M3D_VECTOR vTemp2 = M3D_PERMUTE_PS(V2, _MM_SHUFFLE(3, 1, 0, 2));
// Perform the left operation
M3D_VECTOR vResult = _mm_mul_ps(vTemp1, vTemp2);
// z1,x1,y1,w1
vTemp1 = M3D_PERMUTE_PS(vTemp1, _MM_SHUFFLE(3, 0, 2, 1));
// y2,z2,x2,w2
vTemp2 = M3D_PERMUTE_PS(vTemp2, _MM_SHUFFLE(3, 1, 0, 2));
// Perform the right operation
vResult = M3D_FMADD_PS(vTemp1, vTemp2, vResult);
// Set w to zero
return _mm_and_ps(vResult, M3D_MMask3);
#endif
}
inline M3D_VECTOR M3D_V3LengthSq(M3D_VECTOR V) noexcept {
return M3D_V3Dot(V, V);
}
inline M3D_VECTOR M3D_V3Length(M3D_VECTOR V) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_VECTOR Result;
Result = M3D_V3LengthSq(V);
Result = M3D_V4Sqrt(Result);
return Result;
#elif defined(SSE4_INTRINSICS)
M3D_VECTOR vTemp = _mm_dp_ps(V, V, 0x7f);
return _mm_sqrt_ps(vTemp);
#elif defined(SSE3_INTRINSICS)
M3D_VECTOR vLengthSq = _mm_mul_ps(V, V);
vLengthSq = _mm_and_ps(vLengthSq, g_XMMask3);
vLengthSq = _mm_hadd_ps(vLengthSq, vLengthSq);
vLengthSq = _mm_hadd_ps(vLengthSq, vLengthSq);
vLengthSq = _mm_sqrt_ps(vLengthSq);
return vLengthSq;
#else
// Perform the dot product on x,y and z
M3D_VECTOR vLengthSq = _mm_mul_ps(V, V);
// vTemp has z and y
M3D_VECTOR vTemp = M3D_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(1, 2, 1, 2));
// x+z, y
vLengthSq = _mm_add_ss(vLengthSq, vTemp);
// y,y,y,y
vTemp = M3D_PERMUTE_PS(vTemp, _MM_SHUFFLE(1, 1, 1, 1));
// x+z+y,??,??,??
vLengthSq = _mm_add_ss(vLengthSq, vTemp);
// Splat the length squared
vLengthSq = M3D_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(0, 0, 0, 0));
// Get the length
vLengthSq = _mm_sqrt_ps(vLengthSq);
return vLengthSq;
#endif
}
inline M3D_VECTOR M3D_V3Normalize(M3D_VECTOR V) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_VECTOR vResult = M3D_V3Length(V);
float fLength = vResult.v4f[0];
// Prevent divide by zero - uhuh
if (fLength > 0) {
fLength = 1.0f / fLength;
}
vResult.v4f[0] = V.v4f[0] * fLength;
vResult.v4f[1] = V.v4f[1] * fLength;
vResult.v4f[2] = V.v4f[2] * fLength;
vResult.v4f[3] = V.v4f[3] * fLength;
return vResult;
#elif defined(SSE4_INTRINSICS)
M3D_VECTOR vLengthSq = _mm_dp_ps(V, V, 0x7f);
// Prepare for the division
M3D_VECTOR vResult = _mm_sqrt_ps(vLengthSq);
// Create zero with a single instruction
M3D_VECTOR vZeroMask = _mm_setzero_ps();
// Test for a divide by zero (Must be FP to detect -0.0)
vZeroMask = _mm_cmpneq_ps(vZeroMask, vResult);
// Failsafe on zero (Or epsilon) length planes
// If the length is infinity, set the elements to zero
vLengthSq = _mm_cmpneq_ps(vLengthSq, g_XMInfinity);
// Divide to perform the normalization
vResult = _mm_div_ps(V, vResult);
// Any that are infinity, set to zero
vResult = _mm_and_ps(vResult, vZeroMask);
// Select qnan or result based on infinite length
M3D_VECTOR vTemp1 = _mm_andnot_ps(vLengthSq, g_XMQNaN);
M3D_VECTOR vTemp2 = _mm_and_ps(vResult, vLengthSq);
vResult = _mm_or_ps(vTemp1, vTemp2);
return vResult;
#elif defined(SSE3_INTRINSICS)
// Perform the dot product on x,y and z only
M3D_VECTOR vLengthSq = _mm_mul_ps(V, V);
vLengthSq = _mm_and_ps(vLengthSq, g_XMMask3);
vLengthSq = _mm_hadd_ps(vLengthSq, vLengthSq);
vLengthSq = _mm_hadd_ps(vLengthSq, vLengthSq);
// Prepare for the division
M3D_VECTOR vResult = _mm_sqrt_ps(vLengthSq);
// Create zero with a single instruction
M3D_VECTOR vZeroMask = _mm_setzero_ps();
// Test for a divide by zero (Must be FP to detect -0.0)
vZeroMask = _mm_cmpneq_ps(vZeroMask, vResult);
// Failsafe on zero (Or epsilon) length planes
// If the length is infinity, set the elements to zero
vLengthSq = _mm_cmpneq_ps(vLengthSq, g_XMInfinity);
// Divide to perform the normalization
vResult = _mm_div_ps(V, vResult);
// Any that are infinity, set to zero
vResult = _mm_and_ps(vResult, vZeroMask);
// Select qnan or result based on infinite length
M3D_VECTOR vTemp1 = _mm_andnot_ps(vLengthSq, g_XMQNaN);
M3D_VECTOR vTemp2 = _mm_and_ps(vResult, vLengthSq);
vResult = _mm_or_ps(vTemp1, vTemp2);
return vResult;
#else
// Perform the dot product on x,y and z only
M3D_VECTOR vLengthSq = _mm_mul_ps(V, V);
M3D_VECTOR vTemp = M3D_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(2, 1, 2, 1));
vLengthSq = _mm_add_ss(vLengthSq, vTemp);
vTemp = M3D_PERMUTE_PS(vTemp, _MM_SHUFFLE(1, 1, 1, 1));
vLengthSq = _mm_add_ss(vLengthSq, vTemp);
vLengthSq = M3D_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(0, 0, 0, 0));
// Prepare for the division
M3D_VECTOR vResult = _mm_sqrt_ps(vLengthSq);
// Create zero with a single instruction
M3D_VECTOR vZeroMask = _mm_setzero_ps();
// Test for a divide by zero (Must be FP to detect -0.0)
vZeroMask = _mm_cmpneq_ps(vZeroMask, vResult);
// Failsafe on zero (Or epsilon) length planes
// If the length is infinity, set the elements to zero
vLengthSq = _mm_cmpneq_ps(vLengthSq, M3D_MInfinity);
// Divide to perform the normalization
vResult = _mm_div_ps(V, vResult);
// Any that are infinity, set to zero
vResult = _mm_and_ps(vResult, vZeroMask);
// Select qnan or result based on infinite length
M3D_VECTOR vTemp1 = _mm_andnot_ps(vLengthSq, M3D_MQNaN);
M3D_VECTOR vTemp2 = _mm_and_ps(vResult, vLengthSq);
vResult = _mm_or_ps(vTemp1, vTemp2);
return vResult;
#endif
}
/* -------------------------------------------------------------------------------------------------------------------------- */
inline M3D_MATRIX M3D_MIdentity() noexcept {
M3D_MATRIX ret;
ret.rows[0] = M3D_MIdentityR0.v;
ret.rows[1] = M3D_MIdentityR1.v;
ret.rows[2] = M3D_MIdentityR2.v;
ret.rows[3] = M3D_MIdentityR3.v;
return ret;
}
inline M3D_MATRIX M3D_MMultiply(M3D_MATRIX M1, M3D_MATRIX& M2) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_MATRIX ret;
// Cache the invariants in registers
float x = M1.mat[0][0];
float y = M1.mat[0][1];
float z = M1.mat[0][2];
float w = M1.mat[0][3];
// Perform the operation on the first row
ret.mat[0][0] = (M2.mat[0][0] * x) + (M2.mat[1][0] * y) + (M2.mat[2][0] * z) + (M2.mat[3][0] * w);
ret.mat[0][1] = (M2.mat[0][1] * x) + (M2.mat[1][1] * y) + (M2.mat[2][1] * z) + (M2.mat[3][1] * w);
ret.mat[0][2] = (M2.mat[0][2] * x) + (M2.mat[1][2] * y) + (M2.mat[2][2] * z) + (M2.mat[3][2] * w);
ret.mat[0][3] = (M2.mat[0][3] * x) + (M2.mat[1][3] * y) + (M2.mat[2][3] * z) + (M2.mat[3][3] * w);
// Repeat for all the other rows
x = M1.mat[1][0];
y = M1.mat[1][1];
z = M1.mat[1][2];
w = M1.mat[1][3];
ret.mat[1][0] = (M2.mat[0][0] * x) + (M2.mat[1][0] * y) + (M2.mat[2][0] * z) + (M2.mat[3][0] * w);
ret.mat[1][1] = (M2.mat[0][1] * x) + (M2.mat[1][1] * y) + (M2.mat[2][1] * z) + (M2.mat[3][1] * w);
ret.mat[1][2] = (M2.mat[0][2] * x) + (M2.mat[1][2] * y) + (M2.mat[2][2] * z) + (M2.mat[3][2] * w);
ret.mat[1][3] = (M2.mat[0][3] * x) + (M2.mat[1][3] * y) + (M2.mat[2][3] * z) + (M2.mat[3][3] * w);
x = M1.mat[2][0];
y = M1.mat[2][1];
z = M1.mat[2][2];
w = M1.mat[2][3];
ret.mat[2][0] = (M2.mat[0][0] * x) + (M2.mat[1][0] * y) + (M2.mat[2][0] * z) + (M2.mat[3][0] * w);
ret.mat[2][1] = (M2.mat[0][1] * x) + (M2.mat[1][1] * y) + (M2.mat[2][1] * z) + (M2.mat[3][1] * w);
ret.mat[2][2] = (M2.mat[0][2] * x) + (M2.mat[1][2] * y) + (M2.mat[2][2] * z) + (M2.mat[3][2] * w);
ret.mat[2][3] = (M2.mat[0][3] * x) + (M2.mat[1][3] * y) + (M2.mat[2][3] * z) + (M2.mat[3][3] * w);
x = M1.mat[3][0];
y = M1.mat[3][1];
z = M1.mat[3][2];
w = M1.mat[3][3];
ret.mat[3][0] = (M2.mat[0][0] * x) + (M2.mat[1][0] * y) + (M2.mat[2][0] * z) + (M2.mat[3][0] * w);
ret.mat[3][1] = (M2.mat[0][1] * x) + (M2.mat[1][1] * y) + (M2.mat[2][1] * z) + (M2.mat[3][1] * w);
ret.mat[3][2] = (M2.mat[0][2] * x) + (M2.mat[1][2] * y) + (M2.mat[2][2] * z) + (M2.mat[3][2] * w);
ret.mat[3][3] = (M2.mat[0][3] * x) + (M2.mat[1][3] * y) + (M2.mat[2][3] * z) + (M2.mat[3][3] * w);
return ret;
#elif defined(AVX2_INTRINSICS)
__m256 t0 = _mm256_castps128_ps256(M1.rows[0]);
t0 = _mm256_insertf128_ps(t0, M1.rows[1], 1);
__m256 t1 = _mm256_castps128_ps256(M1.rows[2]);
t1 = _mm256_insertf128_ps(t1, M1.rows[3], 1);
__m256 u0 = _mm256_castps128_ps256(M2.rows[0]);
u0 = _mm256_insertf128_ps(u0, M2.rows[1], 1);
__m256 u1 = _mm256_castps128_ps256(M2.rows[2]);
u1 = _mm256_insertf128_ps(u1, M2.rows[3], 1);
__m256 a0 = _mm256_shuffle_ps(t0, t0, _MM_SHUFFLE(0, 0, 0, 0));
__m256 a1 = _mm256_shuffle_ps(t1, t1, _MM_SHUFFLE(0, 0, 0, 0));
__m256 b0 = _mm256_permute2f128_ps(u0, u0, 0x00);
__m256 c0 = _mm256_mul_ps(a0, b0);
__m256 c1 = _mm256_mul_ps(a1, b0);
a0 = _mm256_shuffle_ps(t0, t0, _MM_SHUFFLE(1, 1, 1, 1));
a1 = _mm256_shuffle_ps(t1, t1, _MM_SHUFFLE(1, 1, 1, 1));
b0 = _mm256_permute2f128_ps(u0, u0, 0x11);
__m256 c2 = _mm256_fmadd_ps(a0, b0, c0);
__m256 c3 = _mm256_fmadd_ps(a1, b0, c1);
a0 = _mm256_shuffle_ps(t0, t0, _MM_SHUFFLE(2, 2, 2, 2));
a1 = _mm256_shuffle_ps(t1, t1, _MM_SHUFFLE(2, 2, 2, 2));
__m256 b1 = _mm256_permute2f128_ps(u1, u1, 0x00);
__m256 c4 = _mm256_mul_ps(a0, b1);
__m256 c5 = _mm256_mul_ps(a1, b1);
a0 = _mm256_shuffle_ps(t0, t0, _MM_SHUFFLE(3, 3, 3, 3));
a1 = _mm256_shuffle_ps(t1, t1, _MM_SHUFFLE(3, 3, 3, 3));
b1 = _mm256_permute2f128_ps(u1, u1, 0x11);
__m256 c6 = _mm256_fmadd_ps(a0, b1, c4);
__m256 c7 = _mm256_fmadd_ps(a1, b1, c5);
t0 = _mm256_add_ps(c2, c6);
t1 = _mm256_add_ps(c3, c7);
M3D_MATRIX ret;
ret.rows[0] = _mm256_castps256_ps128(t0);
ret.rows[1] = _mm256_extractf128_ps(t0, 1);
ret.rows[2] = _mm256_castps256_ps128(t1);
ret.rows[3] = _mm256_extractf128_ps(t1, 1);
return ret;
#else
M3D_MATRIX ret;
// Splat the component X,Y,Z then W
#ifdef AVX_INTRINSICS
XMVECTOR vX = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.rows[0]) + 0);
XMVECTOR vY = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.rows[0]) + 1);
XMVECTOR vZ = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.rows[0]) + 2);
XMVECTOR vW = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.rows[0]) + 3);
#else
// Use vW to hold the original row
M3D_VECTOR vW = M1.rows[0];
M3D_VECTOR vX = M3D_PERMUTE_PS(vW, _MM_SHUFFLE(0, 0, 0, 0));
M3D_VECTOR vY = M3D_PERMUTE_PS(vW, _MM_SHUFFLE(1, 1, 1, 1));
M3D_VECTOR vZ = M3D_PERMUTE_PS(vW, _MM_SHUFFLE(2, 2, 2, 2));
vW = M3D_PERMUTE_PS(vW, _MM_SHUFFLE(3, 3, 3, 3));
#endif
// Perform the operation on the first row
vX = _mm_mul_ps(vX, M2.rows[0]);
vY = _mm_mul_ps(vY, M2.rows[1]);
vZ = _mm_mul_ps(vZ, M2.rows[2]);
vW = _mm_mul_ps(vW, M2.rows[3]);
// Perform a binary add to reduce cumulative errors
vX = _mm_add_ps(vX, vZ);
vY = _mm_add_ps(vY, vW);
vX = _mm_add_ps(vX, vY);
ret.rows[0] = vX;
// Repeat for the other 3 rows
#ifdef AVX_INTRINSICS
vX = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.rows[1]) + 0);
vY = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.rows[1]) + 1);
vZ = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.rows[1]) + 2);
vW = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.rows[1]) + 3);
#else
vW = M1.rows[1];
vX = M3D_PERMUTE_PS(vW, _MM_SHUFFLE(0, 0, 0, 0));
vY = M3D_PERMUTE_PS(vW, _MM_SHUFFLE(1, 1, 1, 1));
vZ = M3D_PERMUTE_PS(vW, _MM_SHUFFLE(2, 2, 2, 2));
vW = M3D_PERMUTE_PS(vW, _MM_SHUFFLE(3, 3, 3, 3));
#endif
vX = _mm_mul_ps(vX, M2.rows[0]);
vY = _mm_mul_ps(vY, M2.rows[1]);
vZ = _mm_mul_ps(vZ, M2.rows[2]);
vW = _mm_mul_ps(vW, M2.rows[3]);
vX = _mm_add_ps(vX, vZ);
vY = _mm_add_ps(vY, vW);
vX = _mm_add_ps(vX, vY);
ret.rows[1] = vX;
#ifdef AVX_INTRINSICS
vX = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.rows[2]) + 0);
vY = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.rows[2]) + 1);
vZ = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.rows[2]) + 2);
vW = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.rows[2]) + 3);
#else
vW = M1.rows[2];
vX = M3D_PERMUTE_PS(vW, _MM_SHUFFLE(0, 0, 0, 0));
vY = M3D_PERMUTE_PS(vW, _MM_SHUFFLE(1, 1, 1, 1));
vZ = M3D_PERMUTE_PS(vW, _MM_SHUFFLE(2, 2, 2, 2));
vW = M3D_PERMUTE_PS(vW, _MM_SHUFFLE(3, 3, 3, 3));
#endif
vX = _mm_mul_ps(vX, M2.rows[0]);
vY = _mm_mul_ps(vY, M2.rows[1]);
vZ = _mm_mul_ps(vZ, M2.rows[2]);
vW = _mm_mul_ps(vW, M2.rows[3]);
vX = _mm_add_ps(vX, vZ);
vY = _mm_add_ps(vY, vW);
vX = _mm_add_ps(vX, vY);
ret.rows[2] = vX;
#ifdef AVX_INTRINSICS
vX = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.rows[3]) + 0);
vY = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.rows[3]) + 1);
vZ = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.rows[3]) + 2);
vW = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.rows[3]) + 3);
#else
vW = M1.rows[3];
vX = M3D_PERMUTE_PS(vW, _MM_SHUFFLE(0, 0, 0, 0));
vY = M3D_PERMUTE_PS(vW, _MM_SHUFFLE(1, 1, 1, 1));
vZ = M3D_PERMUTE_PS(vW, _MM_SHUFFLE(2, 2, 2, 2));
vW = M3D_PERMUTE_PS(vW, _MM_SHUFFLE(3, 3, 3, 3));
#endif
vX = _mm_mul_ps(vX, M2.rows[0]);
vY = _mm_mul_ps(vY, M2.rows[1]);
vZ = _mm_mul_ps(vZ, M2.rows[2]);
vW = _mm_mul_ps(vW, M2.rows[3]);
vX = _mm_add_ps(vX, vZ);
vY = _mm_add_ps(vY, vW);
vX = _mm_add_ps(vX, vY);
ret.rows[3] = vX;
return ret;
#endif
}
inline M3D_MATRIX M3D_MTranspose(M3D_MATRIX M) noexcept {
#ifdef DISABLE_INTRINSICS
// Original matrix:
//
// m00m01m02m03
// m10m11m12m13
// m20m21m22m23
// m30m31m32m33
M3D_MATRIX P;
P.rows[0] = M3D_V4MergeXY(M.rows[0], M.rows[2]); // m00m20m01m21
P.rows[1] = M3D_V4MergeXY(M.rows[1], M.rows[3]); // m10m30m11m31
P.rows[2] = M3D_V4MergeZW(M.rows[0], M.rows[2]); // m02m22m03m23
P.rows[3] = M3D_V4MergeZW(M.rows[1], M.rows[3]); // m12m32m13m33
M3D_MATRIX MT;
MT.rows[0] = M3D_V4MergeXY(P.rows[0], P.rows[1]); // m00m10m20m30
MT.rows[1] = M3D_V4MergeZW(P.rows[0], P.rows[1]); // m01m11m21m31
MT.rows[2] = M3D_V4MergeXY(P.rows[2], P.rows[3]); // m02m12m22m32
MT.rows[3] = M3D_V4MergeZW(P.rows[2], P.rows[3]); // m03m13m23m33
return MT;
#elif defined(AVX2_INTRINSICS)
__m256 t0 = _mm256_castps128_ps256(M.rows[0]);
t0 = _mm256_insertf128_ps(t0, M.rows[1], 1);
__m256 t1 = _mm256_castps128_ps256(M.rows[2]);
t1 = _mm256_insertf128_ps(t1, M.rows[3], 1);
__m256 vTemp = _mm256_unpacklo_ps(t0, t1);
__m256 vTemp2 = _mm256_unpackhi_ps(t0, t1);
__m256 vTemp3 = _mm256_permute2f128_ps(vTemp, vTemp2, 0x20);
__m256 vTemp4 = _mm256_permute2f128_ps(vTemp, vTemp2, 0x31);
vTemp = _mm256_unpacklo_ps(vTemp3, vTemp4);
vTemp2 = _mm256_unpackhi_ps(vTemp3, vTemp4);
t0 = _mm256_permute2f128_ps(vTemp, vTemp2, 0x20);
t1 = _mm256_permute2f128_ps(vTemp, vTemp2, 0x31);
M3D_MATRIX ret;
ret.rows[0] = _mm256_castps256_ps128(t0);
ret.rows[1] = _mm256_extractf128_ps(t0, 1);
ret.rows[2] = _mm256_castps256_ps128(t1);
ret.rows[3] = _mm256_extractf128_ps(t1, 1);
return ret;
#else
// x.x,x.y,y.x,y.y
M3D_VECTOR vTemp1 = _mm_shuffle_ps(M.rows[0], M.rows[1], _MM_SHUFFLE(1, 0, 1, 0));
// x.z,x.w,y.z,y.w
M3D_VECTOR vTemp3 = _mm_shuffle_ps(M.rows[0], M.rows[1], _MM_SHUFFLE(3, 2, 3, 2));
// z.x,z.y,w.x,w.y
M3D_VECTOR vTemp2 = _mm_shuffle_ps(M.rows[2], M.rows[3], _MM_SHUFFLE(1, 0, 1, 0));
// z.z,z.w,w.z,w.w
M3D_VECTOR vTemp4 = _mm_shuffle_ps(M.rows[2], M.rows[3], _MM_SHUFFLE(3, 2, 3, 2));
M3D_MATRIX ret;
// x.x,y.x,z.x,w.x
ret.rows[0] = _mm_shuffle_ps(vTemp1, vTemp2, _MM_SHUFFLE(2, 0, 2, 0));
// x.y,y.y,z.y,w.y
ret.rows[1] = _mm_shuffle_ps(vTemp1, vTemp2, _MM_SHUFFLE(3, 1, 3, 1));
// x.z,y.z,z.z,w.z
ret.rows[2] = _mm_shuffle_ps(vTemp3, vTemp4, _MM_SHUFFLE(2, 0, 2, 0));
// x.w,y.w,z.w,w.w
ret.rows[3] = _mm_shuffle_ps(vTemp3, vTemp4, _MM_SHUFFLE(3, 1, 3, 1));
return ret;
#endif
}
/* -------------------------------------------------------------------------------------------------------------------------- */
inline M3D_VECTOR M3D_V3Transform(M3D_VECTOR V, M3D_MATRIX M) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_VECTOR Z = M3D_V4SplatZ(V);
M3D_VECTOR Y = M3D_V4SplatY(V);
M3D_VECTOR X = M3D_V4SplatX(V);
M3D_VECTOR Result = M3D_V4MultiplyAdd(Z, M.rows[2], M.rows[3]);
Result = M3D_V4MultiplyAdd(Y, M.rows[1], Result);
Result = M3D_V4MultiplyAdd(X, M.rows[0], Result);
return Result;
#else
M3D_VECTOR vResult = M3D_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2)); // Z
vResult = M3D_FMADD_PS(vResult, M.rows[2], M.rows[3]);
M3D_VECTOR vTemp = M3D_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1)); // Y
vResult = M3D_FMADD_PS(vTemp, M.rows[1], vResult);
vTemp = M3D_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0)); // X
vResult = M3D_FMADD_PS(vTemp, M.rows[0], vResult);
return vResult;
#endif
}
inline void M3D_V3Transform(
M3D_F4* pOutputStream,
size_t OutputStride,
const M3D_F3* pInputStream,
size_t InputStride,
size_t VectorCount,
M3D_MATRIX M
) noexcept {
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
const M3D_VECTOR row0 = M.rows[0];
const M3D_VECTOR row1 = M.rows[1];
const M3D_VECTOR row2 = M.rows[2];
const M3D_VECTOR row3 = M.rows[3];
#ifdef DISABLE_INTRINSICS
for (size_t i = 0; i < VectorCount; i++) {
M3D_VECTOR V = M3D_V4LoadF3(reinterpret_cast<const M3D_F3*>(pInputVector));
M3D_VECTOR Z = M3D_V4SplatZ(V);
M3D_VECTOR Y = M3D_V4SplatY(V);
M3D_VECTOR X = M3D_V4SplatX(V);
M3D_VECTOR Result = M3D_V4MultiplyAdd(Z, row2, row3);
Result = M3D_V4MultiplyAdd(Y, row1, Result);
Result = M3D_V4MultiplyAdd(X, row0, Result);
M3D_V4StoreF4(reinterpret_cast<M3D_F4*>(pOutputVector), Result);
pInputVector += InputStride;
pOutputVector += OutputStride;
}
#else
size_t i = 0;
size_t four = VectorCount >> 2;
if (four > 0) {
if (InputStride == sizeof(M3D_F3)) {
if (!(reinterpret_cast<uintptr_t>(pOutputStream) & 0xF) && !(OutputStride & 0xF)) {
// Packed input, aligned output
for (size_t j = 0; j < four; ++j) {
__m128 V1 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
__m128 L2 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 16));
__m128 L3 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 32));
pInputVector += sizeof(M3D_F3) * 4;
// Unpack the 4 vectors (.w components are junk)
M3D_UNPACK3INTO4(V1, L2, L3);
// Result 1
M3D_VECTOR Z = M3D_PERMUTE_PS(V1, _MM_SHUFFLE(2, 2, 2, 2));
M3D_VECTOR Y = M3D_PERMUTE_PS(V1, _MM_SHUFFLE(1, 1, 1, 1));
M3D_VECTOR X = M3D_PERMUTE_PS(V1, _MM_SHUFFLE(0, 0, 0, 0));
M3D_VECTOR vTemp = M3D_FMADD_PS(Z, row2, row3);
M3D_VECTOR vTemp2 = _mm_mul_ps(Y, row1);
M3D_VECTOR vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
M3D_STREAM_PS(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
// Result 2
Z = M3D_PERMUTE_PS(V2, _MM_SHUFFLE(2, 2, 2, 2));
Y = M3D_PERMUTE_PS(V2, _MM_SHUFFLE(1, 1, 1, 1));
X = M3D_PERMUTE_PS(V2, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = M3D_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
M3D_STREAM_PS(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
// Result 3
Z = M3D_PERMUTE_PS(V3, _MM_SHUFFLE(2, 2, 2, 2));
Y = M3D_PERMUTE_PS(V3, _MM_SHUFFLE(1, 1, 1, 1));
X = M3D_PERMUTE_PS(V3, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = M3D_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
M3D_STREAM_PS(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
// Result 4
Z = M3D_PERMUTE_PS(V4, _MM_SHUFFLE(2, 2, 2, 2));
Y = M3D_PERMUTE_PS(V4, _MM_SHUFFLE(1, 1, 1, 1));
X = M3D_PERMUTE_PS(V4, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = M3D_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
M3D_STREAM_PS(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
i += 4;
}
} else {
// Packed input, unaligned output
for (size_t j = 0; j < four; ++j)
{
__m128 V1 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
__m128 L2 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 16));
__m128 L3 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 32));
pInputVector += sizeof(M3D_F3) * 4;
// Unpack the 4 vectors (.w components are junk)
M3D_UNPACK3INTO4(V1, L2, L3);
// Result 1
M3D_VECTOR Z = M3D_PERMUTE_PS(V1, _MM_SHUFFLE(2, 2, 2, 2));
M3D_VECTOR Y = M3D_PERMUTE_PS(V1, _MM_SHUFFLE(1, 1, 1, 1));
M3D_VECTOR X = M3D_PERMUTE_PS(V1, _MM_SHUFFLE(0, 0, 0, 0));
M3D_VECTOR vTemp = M3D_FMADD_PS(Z, row2, row3);
M3D_VECTOR vTemp2 = _mm_mul_ps(Y, row1);
M3D_VECTOR vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
// Result 2
Z = M3D_PERMUTE_PS(V2, _MM_SHUFFLE(2, 2, 2, 2));
Y = M3D_PERMUTE_PS(V2, _MM_SHUFFLE(1, 1, 1, 1));
X = M3D_PERMUTE_PS(V2, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = M3D_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
// Result 3
Z = M3D_PERMUTE_PS(V3, _MM_SHUFFLE(2, 2, 2, 2));
Y = M3D_PERMUTE_PS(V3, _MM_SHUFFLE(1, 1, 1, 1));
X = M3D_PERMUTE_PS(V3, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = M3D_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
// Result 4
Z = M3D_PERMUTE_PS(V4, _MM_SHUFFLE(2, 2, 2, 2));
Y = M3D_PERMUTE_PS(V4, _MM_SHUFFLE(1, 1, 1, 1));
X = M3D_PERMUTE_PS(V4, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = M3D_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
i += 4;
}
}
}
}
if (!(reinterpret_cast<uintptr_t>(pOutputStream) & 0xF) && !(OutputStride & 0xF)) {
// Aligned output
for (; i < VectorCount; ++i) {
M3D_VECTOR V = M3D_V4LoadF3(reinterpret_cast<const M3D_F3*>(pInputVector));
pInputVector += InputStride;
M3D_VECTOR Z = M3D_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
M3D_VECTOR Y = M3D_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
M3D_VECTOR X = M3D_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
M3D_VECTOR vTemp = M3D_FMADD_PS(Z, row2, row3);
M3D_VECTOR vTemp2 = _mm_mul_ps(Y, row1);
M3D_VECTOR vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
M3D_STREAM_PS(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
}
} else {
// Unaligned output
for (; i < VectorCount; ++i)
{
M3D_VECTOR V = M3D_V4LoadF3(reinterpret_cast<const M3D_F3*>(pInputVector));
pInputVector += InputStride;
M3D_VECTOR Z = M3D_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
M3D_VECTOR Y = M3D_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
M3D_VECTOR X = M3D_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
M3D_VECTOR vTemp = M3D_FMADD_PS(Z, row2, row3);
M3D_VECTOR vTemp2 = _mm_mul_ps(Y, row1);
M3D_VECTOR vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
}
}
M3D_SFENCE();
#endif
}
inline M3D_VECTOR M3D_V3TransformPersDiv(M3D_VECTOR V, M3D_MATRIX M) noexcept {
M3D_VECTOR Z = M3D_V4SplatZ(V);
M3D_VECTOR Y = M3D_V4SplatY(V);
M3D_VECTOR X = M3D_V4SplatX(V);
M3D_VECTOR Result = M3D_V4MultiplyAdd(Z, M.rows[2], M.rows[3]);
Result = M3D_V4MultiplyAdd(Y, M.rows[1], Result);
Result = M3D_V4MultiplyAdd(X, M.rows[0], Result);
M3D_VECTOR W = M3D_V4SplatW(Result);
return M3D_V4Divide(Result, W);
}
inline void M3D_V3TransformPersDiv(
M3D_F3* pOutputStream,
size_t OutputStride,
const M3D_F3* pInputStream,
size_t InputStride,
size_t VectorCount,
M3D_MATRIX M
) noexcept {
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
const M3D_VECTOR row0 = M.rows[0];
const M3D_VECTOR row1 = M.rows[1];
const M3D_VECTOR row2 = M.rows[2];
const M3D_VECTOR row3 = M.rows[3];
#ifdef DISABLE_INTRINSICS
for (size_t i = 0; i < VectorCount; i++)
{
M3D_VECTOR V = M3D_V4LoadF3(reinterpret_cast<const M3D_F3*>(pInputVector));
M3D_VECTOR Z = M3D_V4SplatZ(V);
M3D_VECTOR Y = M3D_V4SplatY(V);
M3D_VECTOR X = M3D_V4SplatX(V);
M3D_VECTOR Result = M3D_V4MultiplyAdd(Z, row2, row3);
Result = M3D_V4MultiplyAdd(Y, row1, Result);
Result = M3D_V4MultiplyAdd(X, row0, Result);
M3D_VECTOR W = M3D_V4SplatW(Result);
Result = M3D_V4Divide(Result, W);
M3D_V4StoreF3(reinterpret_cast<M3D_F3*>(pOutputVector), Result);
pInputVector += InputStride;
pOutputVector += OutputStride;
}
#else
size_t i = 0;
size_t four = VectorCount >> 2;
if (four > 0) {
if (InputStride == sizeof(M3D_F3)) {
if (OutputStride == sizeof(M3D_F3)) {
if (!(reinterpret_cast<uintptr_t>(pOutputStream) & 0xF)) {
// Packed input, aligned & packed output
for (size_t j = 0; j < four; ++j) {
__m128 V1 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
__m128 L2 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 16));
__m128 L3 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 32));
pInputVector += sizeof(M3D_F3) * 4;
// Unpack the 4 vectors (.w components are junk)
M3D_UNPACK3INTO4(V1, L2, L3);
// Result 1
M3D_VECTOR Z = M3D_PERMUTE_PS(V1, _MM_SHUFFLE(2, 2, 2, 2));
M3D_VECTOR Y = M3D_PERMUTE_PS(V1, _MM_SHUFFLE(1, 1, 1, 1));
M3D_VECTOR X = M3D_PERMUTE_PS(V1, _MM_SHUFFLE(0, 0, 0, 0));
M3D_VECTOR vTemp = M3D_FMADD_PS(Z, row2, row3);
M3D_VECTOR vTemp2 = _mm_mul_ps(Y, row1);
M3D_VECTOR vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
M3D_VECTOR W = M3D_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
V1 = _mm_div_ps(vTemp, W);
// Result 2
Z = M3D_PERMUTE_PS(V2, _MM_SHUFFLE(2, 2, 2, 2));
Y = M3D_PERMUTE_PS(V2, _MM_SHUFFLE(1, 1, 1, 1));
X = M3D_PERMUTE_PS(V2, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = M3D_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = M3D_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
V2 = _mm_div_ps(vTemp, W);
// Result 3
Z = M3D_PERMUTE_PS(V3, _MM_SHUFFLE(2, 2, 2, 2));
Y = M3D_PERMUTE_PS(V3, _MM_SHUFFLE(1, 1, 1, 1));
X = M3D_PERMUTE_PS(V3, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = M3D_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = M3D_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
V3 = _mm_div_ps(vTemp, W);
// Result 4
Z = M3D_PERMUTE_PS(V4, _MM_SHUFFLE(2, 2, 2, 2));
Y = M3D_PERMUTE_PS(V4, _MM_SHUFFLE(1, 1, 1, 1));
X = M3D_PERMUTE_PS(V4, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = M3D_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = M3D_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
V4 = _mm_div_ps(vTemp, W);
// Pack and store the vectors
M3D_PACK4INTO3(vTemp);
M3D_STREAM_PS(reinterpret_cast<float*>(pOutputVector), V1);
M3D_STREAM_PS(reinterpret_cast<float*>(pOutputVector + 16), vTemp);
M3D_STREAM_PS(reinterpret_cast<float*>(pOutputVector + 32), V3);
pOutputVector += sizeof(M3D_F3) * 4;
i += 4;
}
} else {
// Packed input, unaligned & packed output
for (size_t j = 0; j < four; ++j) {
__m128 V1 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
__m128 L2 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 16));
__m128 L3 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 32));
pInputVector += sizeof(M3D_F3) * 4;
// Unpack the 4 vectors (.w components are junk)
M3D_UNPACK3INTO4(V1, L2, L3);
// Result 1
M3D_VECTOR Z = M3D_PERMUTE_PS(V1, _MM_SHUFFLE(2, 2, 2, 2));
M3D_VECTOR Y = M3D_PERMUTE_PS(V1, _MM_SHUFFLE(1, 1, 1, 1));
M3D_VECTOR X = M3D_PERMUTE_PS(V1, _MM_SHUFFLE(0, 0, 0, 0));
M3D_VECTOR vTemp = M3D_FMADD_PS(Z, row2, row3);
M3D_VECTOR vTemp2 = _mm_mul_ps(Y, row1);
M3D_VECTOR vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
M3D_VECTOR W = M3D_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
V1 = _mm_div_ps(vTemp, W);
// Result 2
Z = M3D_PERMUTE_PS(V2, _MM_SHUFFLE(2, 2, 2, 2));
Y = M3D_PERMUTE_PS(V2, _MM_SHUFFLE(1, 1, 1, 1));
X = M3D_PERMUTE_PS(V2, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = M3D_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = M3D_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
V2 = _mm_div_ps(vTemp, W);
// Result 3
Z = M3D_PERMUTE_PS(V3, _MM_SHUFFLE(2, 2, 2, 2));
Y = M3D_PERMUTE_PS(V3, _MM_SHUFFLE(1, 1, 1, 1));
X = M3D_PERMUTE_PS(V3, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = M3D_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = M3D_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
V3 = _mm_div_ps(vTemp, W);
// Result 4
Z = M3D_PERMUTE_PS(V4, _MM_SHUFFLE(2, 2, 2, 2));
Y = M3D_PERMUTE_PS(V4, _MM_SHUFFLE(1, 1, 1, 1));
X = M3D_PERMUTE_PS(V4, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = M3D_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = M3D_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
V4 = _mm_div_ps(vTemp, W);
// Pack and store the vectors
M3D_PACK4INTO3(vTemp);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), V1);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector + 16), vTemp);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector + 32), V3);
pOutputVector += sizeof(M3D_F3) * 4;
i += 4;
}
}
} else {
// Packed input, unpacked output
for (size_t j = 0; j < four; ++j)
{
__m128 V1 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
__m128 L2 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 16));
__m128 L3 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 32));
pInputVector += sizeof(M3D_F3) * 4;
// Unpack the 4 vectors (.w components are junk)
M3D_UNPACK3INTO4(V1, L2, L3);
// Result 1
M3D_VECTOR Z = M3D_PERMUTE_PS(V1, _MM_SHUFFLE(2, 2, 2, 2));
M3D_VECTOR Y = M3D_PERMUTE_PS(V1, _MM_SHUFFLE(1, 1, 1, 1));
M3D_VECTOR X = M3D_PERMUTE_PS(V1, _MM_SHUFFLE(0, 0, 0, 0));
M3D_VECTOR vTemp = M3D_FMADD_PS(Z, row2, row3);
M3D_VECTOR vTemp2 = _mm_mul_ps(Y, row1);
M3D_VECTOR vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
M3D_VECTOR W = M3D_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
M3D_V4StoreF3(reinterpret_cast<M3D_F3*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
// Result 2
Z = M3D_PERMUTE_PS(V2, _MM_SHUFFLE(2, 2, 2, 2));
Y = M3D_PERMUTE_PS(V2, _MM_SHUFFLE(1, 1, 1, 1));
X = M3D_PERMUTE_PS(V2, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = M3D_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = M3D_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
M3D_V4StoreF3(reinterpret_cast<M3D_F3*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
// Result 3
Z = M3D_PERMUTE_PS(V3, _MM_SHUFFLE(2, 2, 2, 2));
Y = M3D_PERMUTE_PS(V3, _MM_SHUFFLE(1, 1, 1, 1));
X = M3D_PERMUTE_PS(V3, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = M3D_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = M3D_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
M3D_V4StoreF3(reinterpret_cast<M3D_F3*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
// Result 4
Z = M3D_PERMUTE_PS(V4, _MM_SHUFFLE(2, 2, 2, 2));
Y = M3D_PERMUTE_PS(V4, _MM_SHUFFLE(1, 1, 1, 1));
X = M3D_PERMUTE_PS(V4, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = M3D_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = M3D_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
M3D_V4StoreF3(reinterpret_cast<M3D_F3*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
i += 4;
}
}
}
}
for (; i < VectorCount; i++) {
M3D_VECTOR V = M3D_V4LoadF3(reinterpret_cast<const M3D_F3*>(pInputVector));
pInputVector += InputStride;
M3D_VECTOR Z = M3D_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
M3D_VECTOR Y = M3D_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
M3D_VECTOR X = M3D_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
M3D_VECTOR vTemp = M3D_FMADD_PS(Z, row2, row3);
M3D_VECTOR vTemp2 = _mm_mul_ps(Y, row1);
M3D_VECTOR vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
M3D_VECTOR W = M3D_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
M3D_V4StoreF3(reinterpret_cast<M3D_F3*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
}
M3D_SFENCE();
#endif
}
/* -------------------------------------------------------------------------------------------------------------------------- */
inline M3D_MATRIX M3D_TransformMatrixCamLookAtLH(M3D_VECTOR viewPos, M3D_VECTOR focusPos, M3D_VECTOR upDirection) noexcept {
M3D_VECTOR dir = M3D_V4Subtract(focusPos, viewPos);
return M3D_TransformMatrixCamLookToLH(viewPos, dir, upDirection);
}
inline M3D_MATRIX M3D_TransformMatrixCamLookAtRH(M3D_VECTOR viewPos, M3D_VECTOR focusPos, M3D_VECTOR upDirection) noexcept {
M3D_VECTOR dir_n = M3D_V4Subtract(viewPos, focusPos);
return M3D_TransformMatrixCamLookToLH(viewPos, dir_n, upDirection);
}
inline M3D_MATRIX M3D_TransformMatrixCamLookToLH(M3D_VECTOR viewPos, M3D_VECTOR viewDirection, M3D_VECTOR upDirection) noexcept {
// Keep viewer's axes orthogonal to each other and of unit length
M3D_VECTOR look_normal = M3D_V3Normalize(viewDirection);
M3D_VECTOR up_norm = M3D_V3Cross(upDirection, look_normal);
up_norm = M3D_V3Normalize(up_norm);
// U, L already ortho-normal, so no need to normalize cross product
M3D_VECTOR right_norm = M3D_V3Cross(look_normal, up_norm);
M3D_VECTOR viewPos_n = M3D_V4Negate(viewPos);
M3D_VECTOR right_vec = M3D_V3Dot(up_norm, viewPos_n);
M3D_VECTOR up_vec = M3D_V3Dot(right_norm, viewPos_n);
M3D_VECTOR look_vec = M3D_V3Dot(look_normal, viewPos_n);
M3D_MATRIX ret;
ret.rows[0] = M3D_V4Select(right_vec, up_norm, M3D_MSelect1110.v);
ret.rows[1] = M3D_V4Select(up_vec, right_norm, M3D_MSelect1110.v);
ret.rows[2] = M3D_V4Select(look_vec, look_normal, M3D_MSelect1110.v);
ret.rows[3] = M3D_MIdentityR3.v;
ret = M3D_MTranspose(ret);
return ret;
}
inline M3D_MATRIX M3D_TransformMatrixCamLookToRH(M3D_VECTOR viewPos, M3D_VECTOR viewDirection, M3D_VECTOR upDirection) noexcept {
M3D_VECTOR viewDirection_n = M3D_V4Negate(viewDirection);
return M3D_TransformMatrixCamLookToLH(viewPos, viewDirection_n, upDirection);
}
inline M3D_MATRIX M3D_TransformMatrixFrustrumFovLH(float fov, float ratio, float near, float far) noexcept {
float SinFov;
float CosFov;
M3D_ScalarSinCos(&SinFov, &CosFov, 0.5f * fov);
float fRange = far / (far - near);
float Height = CosFov / SinFov;
float Width = Height / ratio;
#ifdef DISABLE_INTRINSICS
M3D_MATRIX ret;
ret.mat[0][0] = Width;
ret.mat[0][1] = 0.0f;
ret.mat[0][2] = 0.0f;
ret.mat[0][3] = 0.0f;
ret.mat[1][0] = 0.0f;
ret.mat[1][1] = Height;
ret.mat[1][2] = 0.0f;
ret.mat[1][3] = 0.0f;
ret.mat[2][0] = 0.0f;
ret.mat[2][1] = 0.0f;
ret.mat[2][2] = fRange;
ret.mat[2][3] = 1.0f;
ret.mat[3][0] = 0.0f;
ret.mat[3][1] = 0.0f;
ret.mat[3][2] = -fRange * near;
ret.mat[3][3] = 0.0f;
return ret;
#else
M3D_VECTOR rMem = {
Width,
Height,
fRange,
-fRange * near
};
// Copy from memory to SSE register
M3D_VECTOR vValues = rMem;
M3D_MATRIX ret;
M3D_VECTOR vTemp = _mm_setzero_ps();
vTemp = _mm_move_ss(vTemp, vValues);
ret.rows[0] = vTemp; // Width, 0, 0, 0
vTemp = vValues;
vTemp = _mm_and_ps(vTemp, M3D_MMaskY);
ret.rows[1] = vTemp; // 0, Height, 0, 0
vTemp = _mm_setzero_ps();
vValues = _mm_shuffle_ps(vValues, M3D_MIdentityR3, _MM_SHUFFLE(3, 2, 3, 2));
vTemp = _mm_shuffle_ps(vTemp, vValues, _MM_SHUFFLE(3, 0, 0, 0));
ret.rows[2] = vTemp; // 0, 0, fRange, 1.0f
vTemp = _mm_shuffle_ps(vTemp, vValues, _MM_SHUFFLE(2, 1, 0, 0));
ret.rows[3] = vTemp; // 0, 0, -fRange * near, 0.0f
return ret;
#endif
}
inline M3D_MATRIX M3D_TransformMatrixFrustrumFovRH(float fov, float ratio, float near, float far) noexcept {
float SinFov;
float CosFov;
M3D_ScalarSinCos(&SinFov, &CosFov, 0.5f * fov);
float fRange = far / (near - far);
float Height = CosFov / SinFov;
float Width = Height / ratio;
#ifdef DISABLE_INTRINSICS
M3D_MATRIX ret;
ret.mat[0][0] = Width;
ret.mat[0][1] = 0.0f;
ret.mat[0][2] = 0.0f;
ret.mat[0][3] = 0.0f;
ret.mat[1][0] = 0.0f;
ret.mat[1][1] = Height;
ret.mat[1][2] = 0.0f;
ret.mat[1][3] = 0.0f;
ret.mat[2][0] = 0.0f;
ret.mat[2][1] = 0.0f;
ret.mat[2][2] = fRange;
ret.mat[2][3] = -1.0f;
ret.mat[3][0] = 0.0f;
ret.mat[3][1] = 0.0f;
ret.mat[3][2] = fRange * near;
ret.mat[3][3] = 0.0f;
return ret;
#else
M3D_VECTOR rMem = {
Width,
Height,
fRange,
fRange * near
};
// Copy from memory to SSE register
M3D_VECTOR vValues = rMem;
M3D_MATRIX ret;
M3D_VECTOR vTemp = _mm_setzero_ps();
vTemp = _mm_move_ss(vTemp, vValues);
ret.rows[0] = vTemp; // Height / a_ratio, 0, 0, 0
vTemp = vValues;
vTemp = _mm_and_ps(vTemp, M3D_MMaskY);
ret.rows[1] = vTemp; // 0, CosFov / SinFov, 0, 0
vTemp = _mm_setzero_ps();
vValues = _mm_shuffle_ps(vValues, M3D_MIdentityR3_n, _MM_SHUFFLE(3, 2, 3, 2));
vTemp = _mm_shuffle_ps(vTemp, vValues, _MM_SHUFFLE(3, 0, 0, 0));
ret.rows[2] = vTemp; // 0, 0, fRange, -1.0f
vTemp = _mm_shuffle_ps(vTemp, vValues, _MM_SHUFFLE(2, 1, 0, 0));
ret.rows[3] = vTemp; // 0, 0, fRange * near, 0.0f
return ret;
#endif
}
inline M3D_MATRIX M3D_TransformMatrixScaling(float ScaleX, float ScaleY, float ScaleZ) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_MATRIX ret;
ret.mat[0][0] = ScaleX;
ret.mat[0][1] = 0.0f;
ret.mat[0][2] = 0.0f;
ret.mat[0][3] = 0.0f;
ret.mat[1][0] = 0.0f;
ret.mat[1][1] = ScaleY;
ret.mat[1][2] = 0.0f;
ret.mat[1][3] = 0.0f;
ret.mat[2][0] = 0.0f;
ret.mat[2][1] = 0.0f;
ret.mat[2][2] = ScaleZ;
ret.mat[2][3] = 0.0f;
ret.mat[3][0] = 0.0f;
ret.mat[3][1] = 0.0f;
ret.mat[3][2] = 0.0f;
ret.mat[3][3] = 1.0f;
return ret;
#else
M3D_MATRIX ret;
ret.rows[0] = _mm_set_ps(0, 0, 0, ScaleX);
ret.rows[1] = _mm_set_ps(0, 0, ScaleY, 0);
ret.rows[2] = _mm_set_ps(0, ScaleZ, 0, 0);
ret.rows[3] = M3D_MIdentityR3.v;
return ret;
#endif
}
inline M3D_MATRIX M3D_TransformMatrixTranslate(float OffsetX, float OffsetY, float OffsetZ) noexcept {
#ifdef DISABLE_INTRINSICS
M3D_MATRIX ret;
ret.mat[0][0] = 1.0f;
ret.mat[0][1] = 0.0f;
ret.mat[0][2] = 0.0f;
ret.mat[0][3] = 0.0f;
ret.mat[1][0] = 0.0f;
ret.mat[1][1] = 1.0f;
ret.mat[1][2] = 0.0f;
ret.mat[1][3] = 0.0f;
ret.mat[2][0] = 0.0f;
ret.mat[2][1] = 0.0f;
ret.mat[2][2] = 1.0f;
ret.mat[2][3] = 0.0f;
ret.mat[3][0] = OffsetX;
ret.mat[3][1] = OffsetY;
ret.mat[3][2] = OffsetZ;
ret.mat[3][3] = 1.0f;
return ret;
#else
M3D_MATRIX ret;
ret.rows[0] = M3D_MIdentityR0.v;
ret.rows[1] = M3D_MIdentityR1.v;
ret.rows[2] = M3D_MIdentityR2.v;
ret.rows[3] = M3D_V4Set(OffsetX, OffsetY, OffsetZ, 1.f);
return ret;
#endif
}
inline M3D_MATRIX M3D_TransformMatrixRotationX(float Angle) noexcept {
float SinAngle;
float CosAngle;
M3D_ScalarSinCos(&SinAngle, &CosAngle, Angle);
#ifdef DISABLE_INTRINSICS
M3D_MATRIX ret;
ret.mat[0][0] = 1.0f;
ret.mat[0][1] = 0.0f;
ret.mat[0][2] = 0.0f;
ret.mat[0][3] = 0.0f;
ret.mat[1][0] = 0.0f;
ret.mat[1][1] = CosAngle;
ret.mat[1][2] = SinAngle;
ret.mat[1][3] = 0.0f;
ret.mat[2][0] = 0.0f;
ret.mat[2][1] = -SinAngle;
ret.mat[2][2] = CosAngle;
ret.mat[2][3] = 0.0f;
ret.mat[3][0] = 0.0f;
ret.mat[3][1] = 0.0f;
ret.mat[3][2] = 0.0f;
ret.mat[3][3] = 1.0f;
return ret;
#else
M3D_VECTOR vSin = _mm_set_ss(SinAngle);
M3D_VECTOR vCos = _mm_set_ss(CosAngle);
// x = 0,y = cos,z = sin, w = 0
vCos = _mm_shuffle_ps(vCos, vSin, _MM_SHUFFLE(3, 0, 0, 3));
M3D_MATRIX ret;
ret.rows[0] = M3D_MIdentityR0;
ret.rows[1] = vCos;
// x = 0,y = sin,z = cos, w = 0
vCos = M3D_PERMUTE_PS(vCos, _MM_SHUFFLE(3, 1, 2, 0));
// x = 0,y = -sin,z = cos, w = 0
vCos = _mm_mul_ps(vCos, M3D_MNegateY);
ret.rows[2] = vCos;
ret.rows[3] = M3D_MIdentityR3;
return ret;
#endif
}
inline M3D_MATRIX M3D_TransformMatrixRotationY(float Angle) noexcept {
float SinAngle;
float CosAngle;
M3D_ScalarSinCos(&SinAngle, &CosAngle, Angle);
#ifdef DISABLE_INTRINSICS
M3D_MATRIX ret;
ret.mat[0][0] = CosAngle;
ret.mat[0][1] = 0.0f;
ret.mat[0][2] = -SinAngle;
ret.mat[0][3] = 0.0f;
ret.mat[1][0] = 0.0f;
ret.mat[1][1] = 1.0f;
ret.mat[1][2] = 0.0f;
ret.mat[1][3] = 0.0f;
ret.mat[2][0] = SinAngle;
ret.mat[2][1] = 0.0f;
ret.mat[2][2] = CosAngle;
ret.mat[2][3] = 0.0f;
ret.mat[3][0] = 0.0f;
ret.mat[3][1] = 0.0f;
ret.mat[3][2] = 0.0f;
ret.mat[3][3] = 1.0f;
return ret;
#else
M3D_VECTOR vSin = _mm_set_ss(SinAngle);
M3D_VECTOR vCos = _mm_set_ss(CosAngle);
// x = sin,y = 0,z = cos, w = 0
vSin = _mm_shuffle_ps(vSin, vCos, _MM_SHUFFLE(3, 0, 3, 0));
M3D_MATRIX ret;
ret.rows[2] = vSin;
ret.rows[1] = M3D_MIdentityR1;
// x = cos,y = 0,z = sin, w = 0
vSin = M3D_PERMUTE_PS(vSin, _MM_SHUFFLE(3, 0, 1, 2));
// x = cos,y = 0,z = -sin, w = 0
vSin = _mm_mul_ps(vSin, M3D_MNegateZ);
ret.rows[0] = vSin;
ret.rows[3] = M3D_MIdentityR3;
return ret;
#endif
}
inline M3D_MATRIX M3D_TransformMatrixRotationZ(float Angle) noexcept {
float SinAngle;
float CosAngle;
M3D_ScalarSinCos(&SinAngle, &CosAngle, Angle);
#ifdef DISABLE_INTRINSICS
M3D_MATRIX ret;
ret.mat[0][0] = CosAngle;
ret.mat[0][1] = SinAngle;
ret.mat[0][2] = 0.0f;
ret.mat[0][3] = 0.0f;
ret.mat[1][0] = -SinAngle;
ret.mat[1][1] = CosAngle;
ret.mat[1][2] = 0.0f;
ret.mat[1][3] = 0.0f;
ret.mat[2][0] = 0.0f;
ret.mat[2][1] = 0.0f;
ret.mat[2][2] = 1.0f;
ret.mat[2][3] = 0.0f;
ret.mat[3][0] = 0.0f;
ret.mat[3][1] = 0.0f;
ret.mat[3][2] = 0.0f;
ret.mat[3][3] = 1.0f;
return ret;
#else
M3D_VECTOR vSin = _mm_set_ss(SinAngle);
M3D_VECTOR vCos = _mm_set_ss(CosAngle);
// x = cos,y = sin,z = 0, w = 0
vCos = _mm_unpacklo_ps(vCos, vSin);
M3D_MATRIX ret;
ret.rows[0] = vCos;
// x = sin,y = cos,z = 0, w = 0
vCos = M3D_PERMUTE_PS(vCos, _MM_SHUFFLE(3, 2, 0, 1));
// x = cos,y = -sin,z = 0, w = 0
vCos = _mm_mul_ps(vCos, M3D_MNegateX);
ret.rows[1] = vCos;
ret.rows[2] = M3D_MIdentityR2;
ret.rows[3] = M3D_MIdentityR3;
return ret;
#endif
}
inline M3D_MATRIX M3D_TransformMatrixViewport(float _w, float _h, float _wOffset, float _hOffset) noexcept {
const float widthDiv2 = _w / 2;
const float heightDiv2 = _h / 2;
#ifdef DISABLE_INTRINSICS
M3D_MATRIX ret;
ret.mat[0][0] = widthDiv2;
ret.mat[0][1] = 0.0f;
ret.mat[0][2] = 0.0f;
ret.mat[0][3] = 0.0f;
ret.mat[1][0] = 0.0f;
ret.mat[1][1] = -heightDiv2;
ret.mat[1][2] = 0.0f;
ret.mat[1][3] = 0.0f;
ret.mat[2][0] = 0.0f;
ret.mat[2][1] = 0.0f;
ret.mat[2][2] = 1.0f; // maxZ-minZ ignored
ret.mat[2][3] = 0.0f; // minZ ignored
ret.mat[3][0] = _wOffset + widthDiv2;
ret.mat[3][1] = _hOffset + heightDiv2;
ret.mat[3][2] = 0.0f;
ret.mat[3][3] = 1.0f;
return ret;
#else
M3D_MATRIX ret;
ret.rows[0] = M3D_V4Set(widthDiv2, 0, 0, 0);
ret.rows[1] = M3D_V4Set(0, -heightDiv2, 0, 0);
ret.rows[2] = M3D_MIdentityR2.v; // maxZ-minZ and minZ are ignored
ret.rows[3] = M3D_V4Set(_wOffset + widthDiv2, _hOffset + heightDiv2, 0, 1);
return ret;
#endif
}