304 lines
12 KiB
C++
304 lines
12 KiB
C++
#include "3DRenderer.hpp"
|
||
|
||
#include <SFML/Graphics/RectangleShape.hpp>
|
||
|
||
#include "../World/DbgCube.hpp"
|
||
#include "../World/Tank.hpp"
|
||
|
||
#define SF_COLOR_4CHEX(h) sf::Color((uint32_t)h)
|
||
|
||
//#define DISABLE_AABB_CLIPPING
|
||
//#define DISABLE_TRIANGLE_CLIPPING
|
||
//#define DISABLE_WIREFRAME_MODE
|
||
|
||
|
||
// Rendering pipeline:
|
||
// model matrix (Object SRT) -> view matrix (camera matrix inverted) -> proj matrix -> clipping -> perspective divide -> viewport transformation -> Rasterizer (draw pixels inside projected triangles on 2D screen)
|
||
// object space -> world space -> camera space -> homogeneous clip space -> NDC space -> raster space
|
||
//
|
||
// Rasterizer inputs elements:
|
||
// - texture-buffer (2D array of pixels color value)
|
||
// - z-buffer (2D array of float representing the nearest pixel's depth, all pixels beyond are ignored)
|
||
// - projected vertices-buffer on screen (using vertices-buffer and projection function)
|
||
//
|
||
// Refs:
|
||
// * https://en.wikipedia.org/wiki/3D_projection
|
||
// * https://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-practical-implementation/overview-rasterization-algorithm.html
|
||
// * https://ktstephano.github.io/rendering/stratusgfx/aabbs
|
||
// * https://en.wikipedia.org/wiki/Clipping_(computer_graphics)
|
||
// * https://www.coranac.com/tonc/text/mode7.htm
|
||
// * https://en.wikipedia.org/wiki/Back-face_culling
|
||
// * https://en.wikipedia.org/wiki/Hidden-surface_determination#Occlusion_culling
|
||
// * https://en.wikipedia.org/wiki/Bounding_volume_hierarchy
|
||
|
||
static bool VertexClipTest(M3D_F4& V, sf::Vector2f& RTsize, float gb_factor);
|
||
|
||
Graphic3DRenderer::Graphic3DRenderer() {
|
||
if (mMainCamera == nullptr) {
|
||
mMainCamera = std::make_unique<Camera>();
|
||
mMainCamera->SetPosition(0.0f, 1.5f, -8.0f);
|
||
}
|
||
SetRTSize(1280.f, 324.f);
|
||
mMainCamera->UpdateCamView();
|
||
|
||
// Fill world object list to render
|
||
mRenderList.clear();
|
||
mRenderList.push_back(std::make_shared<ObjectDbgCube>());
|
||
mRenderList.back()->SetPosition(0.f, 0.f, 15.f);
|
||
mRenderList.back()->SetScale(2.0f);
|
||
mRenderList.push_back(std::make_shared<ObjectDbgCube>());
|
||
mRenderList.back()->SetPosition(6.f, 2.f, 2.f);
|
||
mRenderList.back()->SetScale(2.0f);
|
||
mRenderList.push_back(std::make_shared<ObjectDbgCube>());
|
||
mRenderList.back()->SetPosition(-8.f, 5.f, 10.f);
|
||
mRenderList.back()->SetScale(2.0f);
|
||
mRenderList.push_back(std::make_shared<Tank>());
|
||
mRenderList.back()->SetPosition(0.f, 0.f, 0.f);
|
||
mRenderList.back()->SetScale(5.0f);
|
||
}
|
||
|
||
Graphic3DRenderer::~Graphic3DRenderer() {}
|
||
|
||
void Graphic3DRenderer::SetRTSize(unsigned int w, unsigned int h) {
|
||
mRTSize.x = w; mRTSize.y = h;
|
||
mMainCamera->SetFrustrum(75.0f, mRTSize.x/mRTSize.y, 1.0f, 100.f);
|
||
}
|
||
|
||
void Graphic3DRenderer::UpdateCamera(CAMERA_MOVE type, const float value) {
|
||
switch (type) {
|
||
case CAMERA_MOVE_WALK:
|
||
mMainCamera->Walk(value);
|
||
break;
|
||
|
||
case CAMERA_MOVE_STRAFE:
|
||
mMainCamera->Strafe(value);
|
||
break;
|
||
|
||
case CAMERA_MOVE_FLY:
|
||
mMainCamera->Fly(value);
|
||
break;
|
||
|
||
case CAMERA_MOVE_PITCH:
|
||
mMainCamera->Pitch(value);
|
||
break;
|
||
|
||
case CAMERA_MOVE_YAW:
|
||
mMainCamera->Yaw(value);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
mMainCamera->UpdateCamView();
|
||
}
|
||
|
||
void Graphic3DRenderer::Draw(sf::RenderTexture& context) {
|
||
sf::BlendMode sBM = sf::BlendNone;
|
||
sf::RenderStates sRS(sBM);
|
||
|
||
// Hardcoded debug movement, TODO: remove it
|
||
UpdateInternalTestObjects();
|
||
|
||
// Load main matrices
|
||
M3D_MATRIX viewMat = mMainCamera->GetView();
|
||
M3D_MATRIX invViewMat = M3D_MInverse(viewMat); // aka. camMat
|
||
M3D_MATRIX projMat = mMainCamera->GetProj();
|
||
M3D_MATRIX viewProjMat = viewMat * projMat;
|
||
|
||
// Create the frustrum "box"
|
||
M3D_BoundingFrustum camFrustrum(projMat, false);
|
||
camFrustrum.Transform(camFrustrum, invViewMat);
|
||
|
||
const float sgRatio = ComputeSGRatio();
|
||
// -= Draw the sky =-
|
||
// To avoid unfilled pixels on screen, the "sky-plane" will be rendered
|
||
// all over the screen.
|
||
// It's will be useless to use and compute a specific rectangle from the
|
||
// size of the screen!
|
||
// The sky have an infinite z-depth (any objects will be rendered over).
|
||
#ifdef DISABLE_WIREFRAME_MODE
|
||
context.clear(SF_COLOR_4CHEX(0x00B5E2FF));
|
||
#endif
|
||
|
||
// -= Draw the ground =-
|
||
// A simple rectangle shape is used to draw the ground over the sky-plane.
|
||
// The ground is draw after the sky, and before any other object.
|
||
// Depending of the camera pitch, the ratio sky/ground on screen vary.
|
||
// Like the sky, the ground have an infinite z-depth (any objects will
|
||
// be rendered over).
|
||
#ifdef DISABLE_WIREFRAME_MODE
|
||
sf::RectangleShape gndRect;
|
||
if (mMainCamera->GetPos3f().y >= 0) {
|
||
gndRect.setSize(sf::Vector2f(mRTSize.x, mRTSize.y * sgRatio));
|
||
gndRect.setPosition(sf::Vector2f(0, mRTSize.y * (1.f - sgRatio) - 1));
|
||
} else {
|
||
gndRect.setSize(sf::Vector2f(mRTSize.x, mRTSize.y * (1.f - sgRatio)));
|
||
gndRect.setPosition(sf::Vector2f(0, 0));
|
||
}
|
||
gndRect.setFillColor(SF_COLOR_4CHEX(0x009A17FF));
|
||
//gndRect.setFillColor(SF_COLOR_4CHEX(0xD5C2A5FF));
|
||
context.draw(gndRect, sRS);
|
||
#else
|
||
sf::Vertex gndLine[2];
|
||
gndLine[0].position = sf::Vector2f(0, mRTSize.y * (1.f - sgRatio));
|
||
gndLine[0].color = sf::Color::White;
|
||
gndLine[1].position = sf::Vector2f(mRTSize.x - 1, mRTSize.y * (1.f - sgRatio));
|
||
gndLine[1].color = sf::Color::White;
|
||
context.draw(gndLine, 2, sf::Lines);
|
||
#endif
|
||
|
||
// Process scene's objects
|
||
for (auto& obj : mRenderList) {
|
||
M3D_BoundingBox projAABB = obj->GetAABB();
|
||
auto oTMat = obj->GetTransform();
|
||
|
||
// Object outside frustrum clipping
|
||
projAABB.Transform(projAABB, oTMat);
|
||
M3D_ContainmentType objInFrustrum = camFrustrum.Contains(projAABB);
|
||
#ifndef DISABLE_AABB_CLIPPING
|
||
if (objInFrustrum != DISJOINT)
|
||
#endif
|
||
{
|
||
size_t vCount = obj->GetObjectVerticesCount();
|
||
auto& oMesh = obj->GetObjectMesh();
|
||
M3D_F4 projVertices[vCount] = {};
|
||
|
||
// Vertices homogeneous clip space transformation
|
||
M3D_V3Transform(
|
||
projVertices, sizeof(M3D_F4),
|
||
reinterpret_cast<const M3D_F3*>(oMesh.vertices.data()), sizeof(Vertex),
|
||
vCount,
|
||
oTMat * viewProjMat
|
||
);
|
||
|
||
// Draw the object indice triangles if visible or partially clipped
|
||
sf::Vertex v_tri[4];
|
||
for (auto& objPt : oMesh.parts) {
|
||
auto indicePtr = static_cast<const uint32_t*>(objPt.indices.data());
|
||
|
||
for (uint32_t i = 0; i < objPt.GetIndicesCount(); i += 3) {
|
||
// Misscontructed indices tree failsafe
|
||
if (i+2 > objPt.GetIndicesCount())
|
||
break;
|
||
|
||
// Triangle clipping
|
||
#ifndef DISABLE_TRIANGLE_CLIPPING
|
||
//TODO: scissor/clipping depending of how many vertices are outside/inside the clipspace, implement complete Cohen-Sutherland algo or Cyrus–Beck one
|
||
if (VertexClipTest(projVertices[indicePtr[i]], mRTSize, 2.5f) &&
|
||
VertexClipTest(projVertices[indicePtr[i+1]], mRTSize, 2.5f) &&
|
||
VertexClipTest(projVertices[indicePtr[i+2]], mRTSize, 2.5f))
|
||
#endif
|
||
{
|
||
|
||
M3D_VECTOR V1 = M3D_V4LoadF4(&projVertices[indicePtr[i]]);
|
||
M3D_VECTOR V2 = M3D_V4LoadF4(&projVertices[indicePtr[i+1]]);
|
||
M3D_VECTOR V3 = M3D_V4LoadF4(&projVertices[indicePtr[i+2]]);
|
||
|
||
// Do the perspective divide
|
||
V1 = M3D_V4Divide(V1, M3D_V4SplatW(V1));
|
||
V2 = M3D_V4Divide(V2, M3D_V4SplatW(V2));
|
||
V3 = M3D_V4Divide(V3, M3D_V4SplatW(V3));
|
||
|
||
V1 = M3D_V3TransformNDCToViewport(V1, 0.f, 0.f, mRTSize.x, mRTSize.y, 1.f, 100.f);
|
||
V2 = M3D_V3TransformNDCToViewport(V2, 0.f, 0.f, mRTSize.x, mRTSize.y, 1.f, 100.f);
|
||
V3 = M3D_V3TransformNDCToViewport(V3, 0.f, 0.f, mRTSize.x, mRTSize.y, 1.f, 100.f);
|
||
|
||
// Face culling
|
||
if (M3D_V4GetX(M3D_TNormal(V1,V2,V3))*0.5f <= 0) {
|
||
if (objInFrustrum == DISJOINT) {
|
||
v_tri[0].color = sf::Color::Red;
|
||
v_tri[1].color = sf::Color::Red;
|
||
v_tri[2].color = sf::Color::Red;
|
||
} else if (objInFrustrum == INTERSECTS) {
|
||
v_tri[0].color = sf::Color::Yellow;
|
||
v_tri[1].color = sf::Color::Yellow;
|
||
v_tri[2].color = sf::Color::Yellow;
|
||
} else {
|
||
v_tri[0].color = oMesh.vertices[indicePtr[i]].color;
|
||
v_tri[1].color = oMesh.vertices[indicePtr[i+1]].color;
|
||
v_tri[2].color = oMesh.vertices[indicePtr[i+2]].color;
|
||
}
|
||
|
||
v_tri[0].position = sf::Vector2f(M3D_V4GetX(V1), M3D_V4GetY(V1));
|
||
v_tri[1].position = sf::Vector2f(M3D_V4GetX(V2), M3D_V4GetY(V2));
|
||
v_tri[2].position = sf::Vector2f(M3D_V4GetX(V3), M3D_V4GetY(V3));
|
||
v_tri[3] = v_tri[0];
|
||
#ifdef DISABLE_WIREFRAME_MODE
|
||
context.draw(v_tri, 4, sf::Triangles, sRS);
|
||
#else
|
||
context.draw(v_tri, 4, sf::LineStrip, sRS);
|
||
#endif
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void Graphic3DRenderer::UpdateInternalTestObjects() {
|
||
static float thetaAngle = 0.31f;
|
||
thetaAngle = thetaAngle >= 6.283185f ? -6.283185f : thetaAngle + 0.004f;
|
||
static float thetaAngle2 = 2.12f;
|
||
thetaAngle2 = thetaAngle2 >= 6.283185f ? -6.283185f : thetaAngle2 + 0.005f;
|
||
static float thetaAngle3 = -4.78f;
|
||
thetaAngle3 = thetaAngle3 >= 6.283185f ? -6.283185f : thetaAngle3 + 0.008f;
|
||
mRenderList[0]->SetRotation(thetaAngle, 0.f, thetaAngle * 0.5f);
|
||
mRenderList[1]->SetRotation(thetaAngle2, 0.f, thetaAngle2 * 0.5f);
|
||
mRenderList[2]->SetRotation(thetaAngle3, 0.f, thetaAngle3 * 0.5f);
|
||
mRenderList[3]->SetRotation(0.f, thetaAngle, 0.f);
|
||
}
|
||
|
||
// Compute the screen ratio between the ground and the sky (aka. Line of Horizon)
|
||
float Graphic3DRenderer::ComputeSGRatio() {
|
||
static double sgRatio = 0.5f;
|
||
static float fovCos = 0.f;
|
||
static float fovSin = 0.f;
|
||
static float thetaCos = 0.f;
|
||
static float fovThetaSin = 0.f;
|
||
const bool isCamMoved = mMainCamera->IsCameraMoved();
|
||
const bool isFUpdated = mMainCamera->IsFrustrumUpdated();
|
||
if (isCamMoved || isFUpdated) {
|
||
mMainCamera->ResetUpdateFlags();
|
||
|
||
// FoV angle for Y axis is recovered using frustrum FoV and apply RT screen ratio to it
|
||
const float fovYAngleDiv2 = M3D_Deg2Rad(mMainCamera->GetFoV()) * 0.5f;
|
||
// Get the camera pitch angle over camera FoV ratio
|
||
const float theta = M3D_ScalarASinEst(-mMainCamera->GetLook3f().y);
|
||
// Get the camera altitude from the ground
|
||
const float altitude = mMainCamera->GetPos3f().y;
|
||
|
||
fovThetaSin = M3D_ScalarSinEst(fovYAngleDiv2 + theta);
|
||
if (isCamMoved)
|
||
thetaCos = M3D_ScalarCosEst(theta);
|
||
|
||
if (isFUpdated) {
|
||
fovCos = M3D_ScalarCosEst(fovYAngleDiv2);
|
||
fovSin = M3D_ScalarSinEst(fovYAngleDiv2);
|
||
}
|
||
|
||
// Ground/Sky screen ratio calculation using "simple" trigonometric properties of the
|
||
// pinhole (frustrum) camera model.
|
||
// The triangle made by the ground plane intersection with the frustum. This intersection
|
||
// cross the far plane at some point. Instead of computing the coordinate of the point, we
|
||
// directly use the far plane length to get the corresponding ratio for the screen.
|
||
sgRatio = -(altitude * fovCos - mMainCamera->GetFarZ() * fovThetaSin)
|
||
/ (2.f * mMainCamera->GetFarZ() * fovSin * thetaCos);
|
||
}
|
||
|
||
// Clamp
|
||
if (sgRatio > 1.f)
|
||
sgRatio = 1.f;
|
||
else if (sgRatio < 0.f)
|
||
sgRatio = 0.f;
|
||
|
||
return sgRatio;
|
||
}
|
||
|
||
inline static bool VertexClipTest(M3D_F4& V, sf::Vector2f& RTsize, float gb_factor) {
|
||
// Guard band are usually 2-3x the viewport size for the clipping test
|
||
return (V.x > -RTsize.x*gb_factor*V.w && V.x < RTsize.y*gb_factor*V.w &&
|
||
V.y > -RTsize.x*gb_factor*V.w && V.y < RTsize.y*gb_factor*V.w
|
||
);
|
||
} |