/* * This file is part of the Black Magic Debug project. * * Copyright (C) 2014 Richard Meadows * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /* This file implements Atmel SAM D target specific functions for * detecting the device, providing the XML memory map and Flash memory * programming. * * Tested with * * SAMD20E17A (rev C) * * SAMD20J18A (rev B) * * SAMD21J18A (rev B) * * SAML21J17B (rev B) * * */ /* Refer to the SAM D20 Datasheet: * http://www.atmel.com/Images/Atmel-42129-SAM-D20_Datasheet.pdf * particularly Sections 12. DSU and 20. NVMCTRL */ #include "general.h" #include "target.h" #include "target_internal.h" #include "cortexm.h" static int samd_flash_erase(struct target_flash *t, target_addr addr, size_t len); static int samd_flash_write(struct target_flash *f, target_addr dest, const void *src, size_t len); bool samd_cmd_erase_all(target *t, int argc, const char **argv); static bool samd_cmd_lock_flash(target *t, int argc, const char **argv); static bool samd_cmd_unlock_flash(target *t, int argc, const char **argv); static bool samd_cmd_unlock_bootprot(target *t, int argc, const char **argv); static bool samd_cmd_lock_bootprot(target *t, int argc, const char **argv); static bool samd_cmd_read_userrow(target *t, int argc, const char **argv); static bool samd_cmd_serial(target *t, int argc, const char **argv); static bool samd_cmd_mbist(target *t, int argc, const char **argv); static bool samd_cmd_ssb(target *t, int argc, const char **argv); const struct command_s samd_cmd_list[] = { {"erase_mass", (cmd_handler)samd_cmd_erase_all, "Erase entire flash memory"}, {"lock_flash", (cmd_handler)samd_cmd_lock_flash, "Locks flash against spurious commands"}, {"unlock_flash", (cmd_handler)samd_cmd_unlock_flash, "Unlocks flash"}, {"lock_bootprot", (cmd_handler)samd_cmd_lock_bootprot, "Lock the boot protections to maximum"}, {"unlock_bootprot", (cmd_handler)samd_cmd_unlock_bootprot, "Unlock the boot protections to minimum"}, {"user_row", (cmd_handler)samd_cmd_read_userrow, "Prints user row from flash"}, {"serial", (cmd_handler)samd_cmd_serial, "Prints serial number"}, {"mbist", (cmd_handler)samd_cmd_mbist, "Runs the built-in memory test"}, {"set_security_bit", (cmd_handler)samd_cmd_ssb, "Sets the Security Bit"}, {NULL, NULL, NULL} }; /* Non-Volatile Memory Controller (NVMC) Parameters */ #define SAMD_ROW_SIZE 256 #define SAMD_PAGE_SIZE 64 /* -------------------------------------------------------------------------- */ /* Non-Volatile Memory Controller (NVMC) Registers */ /* -------------------------------------------------------------------------- */ #define SAMD_NVMC 0x41004000 #define SAMD_NVMC_CTRLA (SAMD_NVMC + 0x0) #define SAMD_NVMC_CTRLB (SAMD_NVMC + 0x04) #define SAMD_NVMC_PARAM (SAMD_NVMC + 0x08) #define SAMD_NVMC_INTFLAG (SAMD_NVMC + 0x14) #define SAMD_NVMC_STATUS (SAMD_NVMC + 0x18) #define SAMD_NVMC_ADDRESS (SAMD_NVMC + 0x1C) /* Control A Register (CTRLA) */ #define SAMD_CTRLA_CMD_KEY 0xA500 #define SAMD_CTRLA_CMD_ERASEROW 0x0002 #define SAMD_CTRLA_CMD_WRITEPAGE 0x0004 #define SAMD_CTRLA_CMD_ERASEAUXROW 0x0005 #define SAMD_CTRLA_CMD_WRITEAUXPAGE 0x0006 #define SAMD_CTRLA_CMD_LOCK 0x0040 #define SAMD_CTRLA_CMD_UNLOCK 0x0041 #define SAMD_CTRLA_CMD_PAGEBUFFERCLEAR 0x0044 #define SAMD_CTRLA_CMD_SSB 0x0045 #define SAMD_CTRLA_CMD_INVALL 0x0046 /* Interrupt Flag Register (INTFLAG) */ #define SAMD_NVMC_READY (1 << 0) /* Non-Volatile Memory Calibration and Auxiliary Registers */ #define SAMD_NVM_USER_ROW_LOW 0x00804000 #define SAMD_NVM_USER_ROW_HIGH 0x00804004 #define SAMD_NVM_CALIBRATION 0x00806020 #define SAMD_NVM_SERIAL(n) (0x0080A00C + (0x30 * ((n + 3) / 4)) + \ (0x4 * n)) /* -------------------------------------------------------------------------- */ /* Device Service Unit (DSU) Registers */ /* -------------------------------------------------------------------------- */ #define SAMD_DSU 0x41002000 #define SAMD_DSU_EXT_ACCESS (SAMD_DSU + 0x100) #define SAMD_DSU_CTRLSTAT (SAMD_DSU_EXT_ACCESS + 0x0) #define SAMD_DSU_ADDRESS (SAMD_DSU_EXT_ACCESS + 0x4) #define SAMD_DSU_LENGTH (SAMD_DSU_EXT_ACCESS + 0x8) #define SAMD_DSU_DID (SAMD_DSU_EXT_ACCESS + 0x018) #define SAMD_DSU_PID(n) (SAMD_DSU + 0x1FE0 + \ (0x4 * (n % 4)) - (0x10 * (n / 4))) #define SAMD_DSU_CID(n) (SAMD_DSU + 0x1FF0 + \ (0x4 * (n % 4))) /* Control and Status Register (CTRLSTAT) */ #define SAMD_CTRL_CHIP_ERASE (1 << 4) #define SAMD_CTRL_MBIST (1 << 3) #define SAMD_CTRL_CRC (1 << 2) #define SAMD_STATUSA_PERR (1 << 12) #define SAMD_STATUSA_FAIL (1 << 11) #define SAMD_STATUSA_BERR (1 << 10) #define SAMD_STATUSA_CRSTEXT (1 << 9) #define SAMD_STATUSA_DONE (1 << 8) #define SAMD_STATUSB_PROT (1 << 16) /* Device Identification Register (DID) */ #define SAMD_DID_MASK 0xFF3C0000 #define SAMD_DID_CONST_VALUE 0x10000000 #define SAMD_DID_DEVSEL_MASK 0xFF #define SAMD_DID_DEVSEL_POS 0 #define SAMD_DID_REVISION_MASK 0x0F #define SAMD_DID_REVISION_POS 8 #define SAMD_DID_SERIES_MASK 0x1F #define SAMD_DID_SERIES_POS 16 #define SAMD_DID_FAMILY_MASK 0x1F #define SAMD_DID_FAMILY_POS 23 /* Peripheral ID */ #define SAMD_PID_MASK 0x00F7FFFF #define SAMD_PID_CONST_VALUE 0x0001FCD0 /* Component ID */ #define SAMD_CID_VALUE 0xB105100D /* Family parts */ struct samd_part { uint8_t devsel; char pin; uint8_t mem; uint8_t variant; }; static const struct samd_part samd_d21_parts[] = { {0x00, 'J', 18, 'A'}, /* SAMD21J18A */ {0x01, 'J', 17, 'A'}, /* SAMD21J17A */ {0x02, 'J', 16, 'A'}, /* SAMD21J16A */ {0x03, 'J', 15, 'A'}, /* SAMD21J15A */ {0x05, 'G', 18, 'A'}, /* SAMD21G18A */ {0x06, 'G', 17, 'A'}, /* SAMD21G17A */ {0x07, 'G', 16, 'A'}, /* SAMD21G16A */ {0x08, 'G', 15, 'A'}, /* SAMD21G15A */ {0x0A, 'E', 18, 'A'}, /* SAMD21E18A */ {0x0B, 'E', 17, 'A'}, /* SAMD21E17A */ {0x0C, 'E', 16, 'A'}, /* SAMD21E16A */ {0x0D, 'E', 15, 'A'}, /* SAMD21E15A */ {0x0F, 'G', 18, 'A'}, /* SAMD21G18A (WLCSP) */ {0x10, 'G', 17, 'A'}, /* SAMD21G17A (WLCSP) */ {0x20, 'J', 16, 'B'}, /* SAMD21J16B */ {0x21, 'J', 15, 'B'}, /* SAMD21J15B */ {0x23, 'G', 16, 'B'}, /* SAMD21G16B */ {0x24, 'G', 15, 'B'}, /* SAMD21G15B */ {0x26, 'E', 16, 'B'}, /* SAMD21E16B */ {0x27, 'E', 15, 'B'}, /* SAMD21E15B */ {0x55, 'E', 16, 'B'}, /* SAMD21E16B (WLCSP) */ {0x56, 'E', 15, 'B'}, /* SAMD21E15B (WLCSP) */ {0x62, 'E', 16, 'C'}, /* SAMD21E16C (WLCSP) */ {0x63, 'E', 15, 'C'}, /* SAMD21E15C (WLCSP) */ {0xFF, 0, 0, 0} }; static const struct samd_part samd_l21_parts[] = { {0x00, 'J', 18, 'A'}, /* SAML21J18A */ {0x01, 'J', 17, 'A'}, /* SAML21J17A */ {0x02, 'J', 16, 'A'}, /* SAML21J16A */ {0x05, 'G', 18, 'A'}, /* SAML21G18A */ {0x06, 'G', 17, 'A'}, /* SAML21G17A */ {0x07, 'G', 16, 'A'}, /* SAML21G16A */ {0x0A, 'E', 18, 'A'}, /* SAML21E18A */ {0x0B, 'E', 17, 'A'}, /* SAML21E17A */ {0x0C, 'E', 16, 'A'}, /* SAML21E16A */ {0x0D, 'E', 15, 'A'}, /* SAML21E15A */ {0x0F, 'J', 18, 'B'}, /* SAML21J18B */ {0x10, 'J', 17, 'B'}, /* SAML21J17B */ {0x11, 'J', 16, 'B'}, /* SAML21J16B */ {0x14, 'G', 18, 'B'}, /* SAML21G18B */ {0x15, 'G', 17, 'B'}, /* SAML21G17B */ {0x16, 'G', 16, 'B'}, /* SAML21G16B */ {0x19, 'E', 18, 'B'}, /* SAML21E18B */ {0x1A, 'E', 17, 'B'}, /* SAML21E17B */ {0x1B, 'E', 16, 'B'}, /* SAML21E16B */ {0x1C, 'E', 15, 'B'}, /* SAML21E15B */ {0xFF, 0, 0, 0} }; static const struct samd_part samd_l22_parts[] = { {0x00, 'N', 18, 'A'}, /* SAML22N18 */ {0x01, 'N', 17, 'A'}, /* SAML22N17 */ {0x02, 'N', 16, 'A'}, /* SAML22N16 */ {0x05, 'J', 18, 'A'}, /* SAML22J18 */ {0x06, 'J', 17, 'A'}, /* SAML22J17 */ {0x07, 'J', 16, 'A'}, /* SAML22J16 */ {0x0A, 'G', 18, 'A'}, /* SAML22G18 */ {0x0B, 'G', 17, 'A'}, /* SAML22G17 */ {0x0C, 'G', 16, 'A'}, /* SAML22G16 */ {0xFF, 0, 0, 0} }; /** * Reads the SAM D20 Peripheral ID */ uint64_t samd_read_pid(target *t) { uint64_t pid = 0; uint8_t i, j; /* Five PID registers to read LSB first */ for (i = 0, j = 0; i < 5; i++, j += 8) pid |= (target_mem_read32(t, SAMD_DSU_PID(i)) & 0xFF) << j; return pid; } /** * Reads the SAM D20 Component ID */ uint32_t samd_read_cid(target *t) { uint64_t cid = 0; uint8_t i, j; /* Four CID registers to read LSB first */ for (i = 0, j = 0; i < 4; i++, j += 8) cid |= (target_mem_read32(t, SAMD_DSU_CID(i)) & 0xFF) << j; return cid; } /** * Overloads the default cortexm reset function with a version that * removes the target from extended reset where required. */ void samd_reset(target *t) { /** * SRST is not asserted here as it appears to reset the adiv5 * logic, meaning that subsequent adiv5_* calls PLATFORM_FATAL_ERROR. * * This is ok as normally you can just connect the debugger and go, * but if that's not possible (protection or SWCLK being used for * something else) then having SWCLK low on reset should get you * debug access (cold-plugging). TODO: Confirm this * * See the SAM D20 datasheet §12.6 Debug Operation for more * details. * * jtagtap_srst(true); * jtagtap_srst(false); */ /* Read DHCSR here to clear S_RESET_ST bit before reset */ target_mem_read32(t, CORTEXM_DHCSR); /* Request system reset from NVIC: SRST doesn't work correctly */ /* This could be VECTRESET: 0x05FA0001 (reset only core) * or SYSRESETREQ: 0x05FA0004 (system reset) */ target_mem_write32(t, CORTEXM_AIRCR, CORTEXM_AIRCR_VECTKEY | CORTEXM_AIRCR_SYSRESETREQ); /* Exit extended reset */ if (target_mem_read32(t, SAMD_DSU_CTRLSTAT) & SAMD_STATUSA_CRSTEXT) { /* Write bit to clear from extended reset */ target_mem_write32(t, SAMD_DSU_CTRLSTAT, SAMD_STATUSA_CRSTEXT); } /* Poll for release from reset */ while (target_mem_read32(t, CORTEXM_DHCSR) & CORTEXM_DHCSR_S_RESET_ST); /* Reset DFSR flags */ target_mem_write32(t, CORTEXM_DFSR, CORTEXM_DFSR_RESETALL); /* Clear any target errors */ target_check_error(t); } /** * Overloads the default cortexm detached function with a version that * removes the target from extended reset where required. * * Only required for SAM D20 _Revision B_ Silicon */ static void samd20_revB_detach(target *t) { cortexm_detach(t); /* ---- Additional ---- */ /* Exit extended reset */ if (target_mem_read32(t, SAMD_DSU_CTRLSTAT) & SAMD_STATUSA_CRSTEXT) { /* Write bit to clear from extended reset */ target_mem_write32(t, SAMD_DSU_CTRLSTAT, SAMD_STATUSA_CRSTEXT); } } /** * Overloads the default cortexm halt_resume function with a version * that removes the target from extended reset where required. * * Only required for SAM D20 _Revision B_ Silicon */ static void samd20_revB_halt_resume(target *t, bool step) { cortexm_halt_resume(t, step); /* ---- Additional ---- */ /* Exit extended reset */ if (target_mem_read32(t, SAMD_DSU_CTRLSTAT) & SAMD_STATUSA_CRSTEXT) { /* Write bit to clear from extended reset */ target_mem_write32(t, SAMD_DSU_CTRLSTAT, SAMD_STATUSA_CRSTEXT); } } /** * Overload the default cortexm attach for when the samd is protected. * * If the samd is protected then the default cortexm attach will * fail as the S_HALT bit in the DHCSR will never go high. This * function allows users to attach on a temporary basis so they can * rescue the device. */ bool samd_protected_attach(target *t) { /** * TODO: Notify the user that we're not really attached and * they should issue the 'monitor erase_mass' command to * regain access to the chip. */ /* Patch back in the normal cortexm attach for next time */ t->attach = cortexm_attach; /* Allow attach this time */ return true; } /** * Use the DSU Device Indentification Register to populate a struct * describing the SAM D device. */ struct samd_descr { char family; uint8_t series; char revision; char pin; uint8_t mem; char variant; char package[3]; }; struct samd_descr samd_parse_device_id(uint32_t did) { struct samd_descr samd; uint8_t i = 0; const struct samd_part *parts = samd_d21_parts; memset(samd.package, 0, 3); uint8_t family = (did >> SAMD_DID_FAMILY_POS) & SAMD_DID_FAMILY_MASK; uint8_t series = (did >> SAMD_DID_SERIES_POS) & SAMD_DID_SERIES_MASK; uint8_t revision = (did >> SAMD_DID_REVISION_POS) & SAMD_DID_REVISION_MASK; uint8_t devsel = (did >> SAMD_DID_DEVSEL_POS) & SAMD_DID_DEVSEL_MASK; /* Family */ switch (family) { case 0: samd.family = 'D'; break; case 1: samd.family = 'L'; parts = samd_l21_parts; break; case 2: samd.family = 'C'; break; } /* Series */ switch (series) { case 0: samd.series = 20; break; case 1: samd.series = 21; break; case 2: if (family == 1) { samd.series = 22; parts = samd_l22_parts; } else { samd.series = 10; } break; case 3: samd.series = 11; break; } /* Revision */ samd.revision = 'A' + revision; switch (samd.series) { case 20: /* SAM D20 */ switch (devsel / 5) { case 0: samd.pin = 'J'; break; case 1: samd.pin = 'G'; break; case 2: samd.pin = 'E'; break; default: samd.pin = 'u'; break; } samd.mem = 18 - (devsel % 5); samd.variant = 'A'; break; case 21: /* SAM D21/L21 */ case 22: /* SAM L22 */ i = 0; while (parts[i].devsel != 0xFF) { if (parts[i].devsel == devsel) { samd.pin = parts[i].pin; samd.mem = parts[i].mem; samd.variant = parts[i].variant; break; } i++; } break; case 10: /* SAM D10 */ case 11: /* SAM D11 */ switch (devsel / 3) { case 0: samd.package[0] = 'M'; break; case 1: samd.package[0] = 'S'; samd.package[1] = 'S'; break; } samd.pin = 'D'; samd.mem = 14 - (devsel % 3); samd.variant = 'A'; break; } return samd; } static void samd_add_flash(target *t, uint32_t addr, size_t length) { struct target_flash *f = calloc(1, sizeof(*f)); if (!f) { /* calloc failed: heap exhaustion */ DEBUG("calloc: failed in %s\n", __func__); return; } f->start = addr; f->length = length; f->blocksize = SAMD_ROW_SIZE; f->erase = samd_flash_erase; f->write = samd_flash_write; f->buf_size = SAMD_PAGE_SIZE; target_add_flash(t, f); } char variant_string[60]; bool samd_probe(target *t) { uint32_t cid = samd_read_cid(t); uint32_t pid = samd_read_pid(t); /* Check the ARM Coresight Component and Perhiperal IDs */ if ((cid != SAMD_CID_VALUE) || ((pid & SAMD_PID_MASK) != SAMD_PID_CONST_VALUE)) return false; /* Read the Device ID */ uint32_t did = target_mem_read32(t, SAMD_DSU_DID); /* If the Device ID matches */ if ((did & SAMD_DID_MASK) != SAMD_DID_CONST_VALUE) return false; uint32_t ctrlstat = target_mem_read32(t, SAMD_DSU_CTRLSTAT); struct samd_descr samd = samd_parse_device_id(did); /* Protected? */ bool protected = (ctrlstat & SAMD_STATUSB_PROT); /* Part String */ if (protected) { sprintf(variant_string, "Atmel SAM%c%d%c%d%c%s (rev %c) (PROT=1)", samd.family, samd.series, samd.pin, samd.mem, samd.variant, samd.package, samd.revision); } else { sprintf(variant_string, "Atmel SAM%c%d%c%d%c%s (rev %c)", samd.family, samd.series, samd.pin, samd.mem, samd.variant, samd.package, samd.revision); } /* Setup Target */ t->driver = variant_string; t->reset = samd_reset; if (samd.series == 20 && samd.revision == 'B') { /** * These functions check for and * extended reset. Appears to be * related to Errata 35.4.1 ref 12015 */ t->detach = samd20_revB_detach; t->halt_resume = samd20_revB_halt_resume; } if (protected) { /** * Overload the default cortexm attach * for when the samd is protected. * This function allows users to * attach on a temporary basis so they * can rescue the device. */ t->attach = samd_protected_attach; } target_add_ram(t, 0x20000000, 0x8000); samd_add_flash(t, 0x00000000, 0x40000); target_add_commands(t, samd_cmd_list, "SAMD"); /* If we're not in reset here */ if (!platform_srst_get_val()) { /* We'll have to release the target from * extended reset to make attach possible */ if (target_mem_read32(t, SAMD_DSU_CTRLSTAT) & SAMD_STATUSA_CRSTEXT) { /* Write bit to clear from extended reset */ target_mem_write32(t, SAMD_DSU_CTRLSTAT, SAMD_STATUSA_CRSTEXT); } } return true; } /** * Temporary (until next reset) flash memory locking / unlocking */ static void samd_lock_current_address(target *t) { /* Issue the unlock command */ target_mem_write32(t, SAMD_NVMC_CTRLA, SAMD_CTRLA_CMD_KEY | SAMD_CTRLA_CMD_LOCK); } static void samd_unlock_current_address(target *t) { /* Issue the unlock command */ target_mem_write32(t, SAMD_NVMC_CTRLA, SAMD_CTRLA_CMD_KEY | SAMD_CTRLA_CMD_UNLOCK); } /** * Erase flash row by row */ static int samd_flash_erase(struct target_flash *f, target_addr addr, size_t len) { target *t = f->t; while (len) { /* Write address of first word in row to erase it */ /* Must be shifted right for 16-bit address, see Datasheet §20.8.8 Address */ target_mem_write32(t, SAMD_NVMC_ADDRESS, addr >> 1); /* Unlock */ samd_unlock_current_address(t); /* Issue the erase command */ target_mem_write32(t, SAMD_NVMC_CTRLA, SAMD_CTRLA_CMD_KEY | SAMD_CTRLA_CMD_ERASEROW); /* Poll for NVM Ready */ while ((target_mem_read32(t, SAMD_NVMC_INTFLAG) & SAMD_NVMC_READY) == 0) if (target_check_error(t)) return -1; /* Lock */ samd_lock_current_address(t); addr += f->blocksize; if (len > f->blocksize) len -= f->blocksize; else len = 0; } return 0; } /** * Write flash page by page */ static int samd_flash_write(struct target_flash *f, target_addr dest, const void *src, size_t len) { target *t = f->t; /* Write within a single page. This may be part or all of the page */ target_mem_write(t, dest, src, len); /* Unlock */ samd_unlock_current_address(t); /* Issue the write page command */ target_mem_write32(t, SAMD_NVMC_CTRLA, SAMD_CTRLA_CMD_KEY | SAMD_CTRLA_CMD_WRITEPAGE); /* Poll for NVM Ready */ while ((target_mem_read32(t, SAMD_NVMC_INTFLAG) & SAMD_NVMC_READY) == 0) if (target_check_error(t)) return -1; /* Lock */ samd_lock_current_address(t); return 0; } /** * Uses the Device Service Unit to erase the entire flash */ bool samd_cmd_erase_all(target *t, int argc, const char **argv) { (void)argc; (void)argv; /* Clear the DSU status bits */ target_mem_write32(t, SAMD_DSU_CTRLSTAT, SAMD_STATUSA_DONE | SAMD_STATUSA_PERR | SAMD_STATUSA_FAIL); /* Erase all */ target_mem_write32(t, SAMD_DSU_CTRLSTAT, SAMD_CTRL_CHIP_ERASE); /* Poll for DSU Ready */ uint32_t status; while (((status = target_mem_read32(t, SAMD_DSU_CTRLSTAT)) & (SAMD_STATUSA_DONE | SAMD_STATUSA_PERR | SAMD_STATUSA_FAIL)) == 0) if (target_check_error(t)) return false; /* Test the protection error bit in Status A */ if (status & SAMD_STATUSA_PERR) { tc_printf(t, "Erase failed due to a protection error.\n"); return true; } /* Test the fail bit in Status A */ if (status & SAMD_STATUSA_FAIL) { tc_printf(t, "Erase failed.\n"); return true; } tc_printf(t, "Erase successful!\n"); return true; } /** * Sets the NVM region lock bits in the User Row. This value is read * at startup as the default value for the lock bits, and hence does * not take effect until a reset. * * 0x0000 = Lock, 0xFFFF = Unlock (default) */ static bool samd_set_flashlock(target *t, uint16_t value, const char **argv) { (void)argv; uint32_t high = target_mem_read32(t, SAMD_NVM_USER_ROW_HIGH); uint32_t low = target_mem_read32(t, SAMD_NVM_USER_ROW_LOW); /* Write address of a word in the row to erase it */ /* Must be shifted right for 16-bit address, see Datasheet §20.8.8 Address */ target_mem_write32(t, SAMD_NVMC_ADDRESS, SAMD_NVM_USER_ROW_LOW >> 1); /* Issue the erase command */ target_mem_write32(t, SAMD_NVMC_CTRLA, SAMD_CTRLA_CMD_KEY | SAMD_CTRLA_CMD_ERASEAUXROW); /* Poll for NVM Ready */ while ((target_mem_read32(t, SAMD_NVMC_INTFLAG) & SAMD_NVMC_READY) == 0) if (target_check_error(t)) return -1; /* Modify the high byte of the user row */ high = (high & 0x0000FFFF) | ((value << 16) & 0xFFFF0000); /* Write back */ target_mem_write32(t, SAMD_NVM_USER_ROW_LOW, low); target_mem_write32(t, SAMD_NVM_USER_ROW_HIGH, high); /* Issue the page write command */ target_mem_write32(t, SAMD_NVMC_CTRLA, SAMD_CTRLA_CMD_KEY | SAMD_CTRLA_CMD_WRITEAUXPAGE); return true; } static bool samd_cmd_lock_flash(target *t, int argc, const char **argv) { (void)argc; (void)argv; return samd_set_flashlock(t, 0x0000, NULL); } static bool samd_cmd_unlock_flash(target *t, int argc, const char **argv) { (void)argc; (void)argv; return samd_set_flashlock(t, 0xFFFF, NULL); } static bool samd_set_bootprot(target *t, uint16_t value, const char **argv) { (void)argv; uint32_t high = target_mem_read32(t, SAMD_NVM_USER_ROW_HIGH); uint32_t low = target_mem_read32(t, SAMD_NVM_USER_ROW_LOW); /* Write address of a word in the row to erase it */ /* Must be shifted right for 16-bit address, see Datasheet §20.8.8 Address */ target_mem_write32(t, SAMD_NVMC_ADDRESS, SAMD_NVM_USER_ROW_LOW >> 1); /* Issue the erase command */ target_mem_write32(t, SAMD_NVMC_CTRLA, SAMD_CTRLA_CMD_KEY | SAMD_CTRLA_CMD_ERASEAUXROW); /* Poll for NVM Ready */ while ((target_mem_read32(t, SAMD_NVMC_INTFLAG) & SAMD_NVMC_READY) == 0) if (target_check_error(t)) return -1; /* Modify the low word of the user row */ low = (low & 0xFFFFFFF8) | ((value << 0 ) & 0x00000007); /* Write back */ target_mem_write32(t, SAMD_NVM_USER_ROW_LOW, low); target_mem_write32(t, SAMD_NVM_USER_ROW_HIGH, high); /* Issue the page write command */ target_mem_write32(t, SAMD_NVMC_CTRLA, SAMD_CTRLA_CMD_KEY | SAMD_CTRLA_CMD_WRITEAUXPAGE); return true; } static bool samd_cmd_lock_bootprot(target *t, int argc, const char **argv) { (void)argc; (void)argv; return samd_set_bootprot(t, 0, NULL); } static bool samd_cmd_unlock_bootprot(target *t, int argc, const char **argv) { (void)argc; (void)argv; return samd_set_bootprot(t, 7, NULL); } static bool samd_cmd_read_userrow(target *t, int argc, const char **argv) { (void)argc; (void)argv; tc_printf(t, "User Row: 0x%08x%08x\n", target_mem_read32(t, SAMD_NVM_USER_ROW_HIGH), target_mem_read32(t, SAMD_NVM_USER_ROW_LOW)); return true; } /** * Reads the 128-bit serial number from the NVM */ static bool samd_cmd_serial(target *t, int argc, const char **argv) { (void)argc; (void)argv; tc_printf(t, "Serial Number: 0x"); for (uint32_t i = 0; i < 4; i++) { tc_printf(t, "%08x", target_mem_read32(t, SAMD_NVM_SERIAL(i))); } tc_printf(t, "\n"); return true; } /** * Returns the size (in bytes) of the current SAM D20's flash memory. */ static uint32_t samd_flash_size(target *t) { /* Read the Device ID */ uint32_t did = target_mem_read32(t, SAMD_DSU_DID); /* Mask off the device select bits */ uint8_t devsel = did & SAMD_DID_DEVSEL_MASK; /* Shift the maximum flash size (256KB) down as appropriate */ return (0x40000 >> (devsel % 5)); } /** * Runs the Memory Built In Self Test (MBIST) */ static bool samd_cmd_mbist(target *t, int argc, const char **argv) { (void)argc; (void)argv; /* Write the memory parameters to the DSU */ target_mem_write32(t, SAMD_DSU_ADDRESS, 0); target_mem_write32(t, SAMD_DSU_LENGTH, samd_flash_size(t)); /* Clear the fail bit */ target_mem_write32(t, SAMD_DSU_CTRLSTAT, SAMD_STATUSA_FAIL); /* Write the MBIST command */ target_mem_write32(t, SAMD_DSU_CTRLSTAT, SAMD_CTRL_MBIST); /* Poll for DSU Ready */ uint32_t status; while (((status = target_mem_read32(t, SAMD_DSU_CTRLSTAT)) & (SAMD_STATUSA_DONE | SAMD_STATUSA_PERR | SAMD_STATUSA_FAIL)) == 0) if (target_check_error(t)) return false; /* Test the protection error bit in Status A */ if (status & SAMD_STATUSA_PERR) { tc_printf(t, "MBIST not run due to protection error.\n"); return true; } /* Test the fail bit in Status A */ if (status & SAMD_STATUSA_FAIL) { tc_printf(t, "MBIST Fail @ 0x%08x\n", target_mem_read32(t, SAMD_DSU_ADDRESS)); } else { tc_printf(t, "MBIST Passed!\n"); } return true; } /** * Sets the security bit */ static bool samd_cmd_ssb(target *t, int argc, const char **argv) { (void)argc; (void)argv; /* Issue the ssb command */ target_mem_write32(t, SAMD_NVMC_CTRLA, SAMD_CTRLA_CMD_KEY | SAMD_CTRLA_CMD_SSB); /* Poll for NVM Ready */ while ((target_mem_read32(t, SAMD_NVMC_INTFLAG) & SAMD_NVMC_READY) == 0) if (target_check_error(t)) return -1; tc_printf(t, "Set the security bit! " "You will need to issue 'monitor erase_mass' to clear this.\n"); return true; }