blackmagic/src/target/stm32f4.c

403 lines
12 KiB
C

/*
* This file is part of the Black Magic Debug project.
*
* Copyright (C) 2011 Black Sphere Technologies Ltd.
* Written by Gareth McMullin <gareth@blacksphere.co.nz>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* This file implements STM32F4 target specific functions for detecting
* the device, providing the XML memory map and Flash memory programming.
*
* Refereces:
* ST doc - RM0090
* Reference manual - STM32F405xx, STM32F407xx, STM32F415xx and STM32F417xx
* advanced ARM-based 32-bit MCUs
* ST doc - PM0081
* Programming manual - STM32F40xxx and STM32F41xxx Flash programming
* manual
*/
#include "general.h"
#include "target.h"
#include "target_internal.h"
#include "cortexm.h"
static bool stm32f4_cmd_erase_mass(target *t);
static bool stm32f4_cmd_option(target *t, int argc, char *argv[]);
static bool stm32f4_cmd_psize(target *t, int argc, char *argv[]);
const struct command_s stm32f4_cmd_list[] = {
{"erase_mass", (cmd_handler)stm32f4_cmd_erase_mass, "Erase entire flash memory"},
{"option", (cmd_handler)stm32f4_cmd_option, "Manipulate option bytes"},
{"psize", (cmd_handler)stm32f4_cmd_psize, "Configure flash write parallelism: (x8|x32)"},
{NULL, NULL, NULL}
};
static int stm32f4_flash_erase(struct target_flash *f, target_addr addr, size_t len);
static int stm32f4_flash_write(struct target_flash *f,
target_addr dest, const void *src, size_t len);
static const char stm32f4_driver_str[] = "STM32F4xx";
static const char stm32f7_driver_str[] = "STM32F7xx";
static const char stm32f2_driver_str[] = "STM32F2xx";
/* Flash Program ad Erase Controller Register Map */
#define FPEC_BASE 0x40023C00
#define FLASH_ACR (FPEC_BASE+0x00)
#define FLASH_KEYR (FPEC_BASE+0x04)
#define FLASH_OPTKEYR (FPEC_BASE+0x08)
#define FLASH_SR (FPEC_BASE+0x0C)
#define FLASH_CR (FPEC_BASE+0x10)
#define FLASH_OPTCR (FPEC_BASE+0x14)
#define FLASH_CR_PG (1 << 0)
#define FLASH_CR_SER (1 << 1)
#define FLASH_CR_MER (1 << 2)
#define FLASH_CR_PSIZE8 (0 << 8)
#define FLASH_CR_PSIZE16 (1 << 8)
#define FLASH_CR_PSIZE32 (2 << 8)
#define FLASH_CR_PSIZE64 (3 << 8)
#define FLASH_CR_STRT (1 << 16)
#define FLASH_CR_EOPIE (1 << 24)
#define FLASH_CR_ERRIE (1 << 25)
#define FLASH_CR_STRT (1 << 16)
#define FLASH_CR_LOCK (1 << 31)
#define FLASH_SR_BSY (1 << 16)
#define FLASH_OPTCR_OPTLOCK (1 << 0)
#define FLASH_OPTCR_OPTSTRT (1 << 1)
#define FLASH_OPTCR_RESERVED 0xf0000013
#define KEY1 0x45670123
#define KEY2 0xCDEF89AB
#define OPTKEY1 0x08192A3B
#define OPTKEY2 0x4C5D6E7F
#define SR_ERROR_MASK 0xF2
#define SR_EOP 0x01
#define DBGMCU_IDCODE 0xE0042000
#define ARM_CPUID 0xE000ED00
#define DBGMCU_CR 0xE0042004
#define DBG_STANDBY (1 << 0)
#define DBG_STOP (1 << 1)
#define DBG_SLEEP (1 << 2)
#define DBGMCU_APB1_FZ 0xE0042008
#define DBG_WWDG_STOP (1 << 11)
#define DBG_IWDG_STOP (1 << 12)
/* This routine uses word access. Only usable on target voltage >2.7V */
static const uint16_t stm32f4_flash_write_x32_stub[] = {
#include "flashstub/stm32f4_x32.stub"
};
/* This routine uses byte access. Usable on target voltage <2.2V */
static const uint16_t stm32f4_flash_write_x8_stub[] = {
#include "flashstub/stm32f4_x8.stub"
};
#define SRAM_BASE 0x20000000
#define STUB_BUFFER_BASE \
ALIGN(SRAM_BASE + MAX(sizeof(stm32f4_flash_write_x8_stub), \
sizeof(stm32f4_flash_write_x32_stub)), 4)
#define AXIM_BASE 0x8000000
#define ITCM_BASE 0x0200000
struct stm32f4_flash {
struct target_flash f;
uint8_t base_sector;
uint8_t psize;
};
static void stm32f4_add_flash(target *t,
uint32_t addr, size_t length, size_t blocksize,
uint8_t base_sector)
{
struct stm32f4_flash *sf = calloc(1, sizeof(*sf));
struct target_flash *f = &sf->f;
f->start = addr;
f->length = length;
f->blocksize = blocksize;
f->erase = stm32f4_flash_erase;
f->write = stm32f4_flash_write;
f->align = 4;
f->erased = 0xff;
sf->base_sector = base_sector;
sf->psize = 32;
target_add_flash(t, f);
}
bool stm32f4_probe(target *t)
{
bool f2 = false;
uint32_t idcode;
idcode = target_mem_read32(t, DBGMCU_IDCODE);
idcode &= 0xFFF;
if (idcode == 0x411)
{
/* F405 revision A have a wrong IDCODE, use ARM_CPUID to make the
* distinction with F205. Revision is also wrong (0x2000 instead
* of 0x1000). See F40x/F41x errata. */
uint32_t cpuid = target_mem_read32(t, ARM_CPUID);
if ((cpuid & 0xFFF0) == 0xC240)
idcode = 0x413;
else
f2 = true;
}
switch(idcode) {
case 0x419: /* 427/437 */
/* Second bank for 2M parts. */
stm32f4_add_flash(t, 0x8100000, 0x10000, 0x4000, 12);
stm32f4_add_flash(t, 0x8110000, 0x10000, 0x10000, 16);
stm32f4_add_flash(t, 0x8120000, 0xE0000, 0x20000, 17);
/* Fall through for stuff common to F40x/F41x */
case 0x411: /* F205 */
case 0x413: /* F405 */
case 0x421: /* F446 */
case 0x423: /* F401 B/C RM0368 Rev.3 */
case 0x431: /* F411 RM0383 Rev.4 */
case 0x433: /* F401 D/E RM0368 Rev.3 */
t->driver = f2 ? stm32f2_driver_str : stm32f4_driver_str;
if (!f2)
target_add_ram(t, 0x10000000, 0x10000);
target_add_ram(t, 0x20000000, 0x30000);
stm32f4_add_flash(t, 0x8000000, 0x10000, 0x4000, 0);
stm32f4_add_flash(t, 0x8010000, 0x10000, 0x10000, 4);
stm32f4_add_flash(t, 0x8020000, 0xE0000, 0x20000, 5);
target_add_commands(t, stm32f4_cmd_list, f2 ? "STM32F2" :
"STM32F4");
break;
case 0x449: /* F7x6 RM0385 Rev.2 */
t->driver = stm32f7_driver_str;
target_add_ram(t, 0x00000000, 0x4000);
target_add_ram(t, 0x20000000, 0x50000);
/* AXIM Flash access */
stm32f4_add_flash(t, 0x8000000, 0x20000, 0x8000, 0);
stm32f4_add_flash(t, 0x8020000, 0x20000, 0x20000, 4);
stm32f4_add_flash(t, 0x8040000, 0xC0000, 0x40000, 5);
/* ITCM */
stm32f4_add_flash(t, 0x0200000, 0x20000, 0x8000, 0);
stm32f4_add_flash(t, 0x0220000, 0x20000, 0x20000, 4);
stm32f4_add_flash(t, 0x0240000, 0xC0000, 0x40000, 5);
target_add_commands(t, stm32f4_cmd_list, "STM32F7");
break;
case 0x451: /* F76x F77x RM0410 */
t->driver = stm32f7_driver_str;
target_add_ram(t, 0x00000000, 0x4000);
target_add_ram(t, 0x20000000, 0x80000);
/* AXIM Flash access */
stm32f4_add_flash(t, 0x8000000, 0x020000, 0x8000, 0);
stm32f4_add_flash(t, 0x8020000, 0x020000, 0x20000, 4);
stm32f4_add_flash(t, 0x8040000, 0x1C0000, 0x40000, 5);
/* ITCM */
stm32f4_add_flash(t, 0x200000, 0x020000, 0x8000, 0);
stm32f4_add_flash(t, 0x220000, 0x020000, 0x20000, 4);
stm32f4_add_flash(t, 0x240000, 0x1C0000, 0x40000, 5);
target_add_commands(t, stm32f4_cmd_list, "STM32F7");
break;
default:
return false;
}
t->idcode = idcode;
return true;
}
static void stm32f4_flash_unlock(target *t)
{
if (target_mem_read32(t, FLASH_CR) & FLASH_CR_LOCK) {
/* Enable FPEC controller access */
target_mem_write32(t, FLASH_KEYR, KEY1);
target_mem_write32(t, FLASH_KEYR, KEY2);
}
}
static int stm32f4_flash_erase(struct target_flash *f, target_addr addr, size_t len)
{
target *t = f->t;
uint16_t sr;
/* No address translation is needed here, as we erase by sector number */
uint8_t sector = ((struct stm32f4_flash *)f)->base_sector +
(addr - f->start)/f->blocksize;
stm32f4_flash_unlock(t);
while(len) {
uint32_t cr = FLASH_CR_EOPIE | FLASH_CR_ERRIE | FLASH_CR_SER |
(sector << 3);
/* Flash page erase instruction */
target_mem_write32(t, FLASH_CR, cr);
/* write address to FMA */
target_mem_write32(t, FLASH_CR, cr | FLASH_CR_STRT);
/* Read FLASH_SR to poll for BSY bit */
while(target_mem_read32(t, FLASH_SR) & FLASH_SR_BSY)
if(target_check_error(t))
return -1;
len -= f->blocksize;
sector++;
}
/* Check for error */
sr = target_mem_read32(t, FLASH_SR);
if(sr & SR_ERROR_MASK)
return -1;
return 0;
}
static int stm32f4_flash_write(struct target_flash *f,
target_addr dest, const void *src, size_t len)
{
/* Translate ITCM addresses to AXIM */
if ((dest >= ITCM_BASE) && (dest < AXIM_BASE)) {
dest = AXIM_BASE + (dest - ITCM_BASE);
}
/* Write buffer to target ram call stub */
if (((struct stm32f4_flash *)f)->psize == 32)
target_mem_write(f->t, SRAM_BASE, stm32f4_flash_write_x32_stub,
sizeof(stm32f4_flash_write_x32_stub));
else
target_mem_write(f->t, SRAM_BASE, stm32f4_flash_write_x8_stub,
sizeof(stm32f4_flash_write_x8_stub));
target_mem_write(f->t, STUB_BUFFER_BASE, src, len);
return cortexm_run_stub(f->t, SRAM_BASE, dest,
STUB_BUFFER_BASE, len, 0);
}
static bool stm32f4_cmd_erase_mass(target *t)
{
const char spinner[] = "|/-\\";
int spinindex = 0;
tc_printf(t, "Erasing flash... This may take a few seconds. ");
stm32f4_flash_unlock(t);
/* Flash mass erase start instruction */
target_mem_write32(t, FLASH_CR, FLASH_CR_MER);
target_mem_write32(t, FLASH_CR, FLASH_CR_STRT | FLASH_CR_MER);
/* Read FLASH_SR to poll for BSY bit */
while (target_mem_read32(t, FLASH_SR) & FLASH_SR_BSY) {
tc_printf(t, "\b%c", spinner[spinindex++ % 4]);
if(target_check_error(t)) {
tc_printf(t, "\n");
return false;
}
}
tc_printf(t, "\n");
/* Check for error */
uint16_t sr = target_mem_read32(t, FLASH_SR);
if ((sr & SR_ERROR_MASK) || !(sr & SR_EOP))
return false;
return true;
}
static bool stm32f4_option_write(target *t, uint32_t value)
{
target_mem_write32(t, FLASH_OPTKEYR, OPTKEY1);
target_mem_write32(t, FLASH_OPTKEYR, OPTKEY2);
value &= ~FLASH_OPTCR_RESERVED;
while (target_mem_read32(t, FLASH_SR) & FLASH_SR_BSY)
if(target_check_error(t))
return -1;
/* WRITE option bytes instruction */
target_mem_write32(t, FLASH_OPTCR, value);
target_mem_write32(t, FLASH_OPTCR, value | FLASH_OPTCR_OPTSTRT);
/* Read FLASH_SR to poll for BSY bit */
while(target_mem_read32(t, FLASH_SR) & FLASH_SR_BSY)
if(target_check_error(t))
return false;
target_mem_write32(t, FLASH_OPTCR, value | FLASH_OPTCR_OPTLOCK);
return true;
}
static bool stm32f4_cmd_option(target *t, int argc, char *argv[])
{
uint32_t start, val;
int len;
if (t->idcode == 0x449) {
start = 0x1FFF0000;
len = 0x20;
}
else {
start = 0x1FFFC000;
len = 0x10;
}
if ((argc == 2) && !strcmp(argv[1], "erase")) {
stm32f4_option_write(t, 0x0fffaaed);
}
else if ((argc == 3) && !strcmp(argv[1], "write")) {
val = strtoul(argv[2], NULL, 0);
stm32f4_option_write(t, val);
} else {
tc_printf(t, "usage: monitor option erase\n");
tc_printf(t, "usage: monitor option write <value>\n");
}
for (int i = 0; i < len; i += 8) {
uint32_t addr = start + i;
val = target_mem_read32(t, addr);
tc_printf(t, "0x%08X: 0x%04X\n", addr, val & 0xFFFF);
}
return true;
}
static bool stm32f4_cmd_psize(target *t, int argc, char *argv[])
{
if (argc == 1) {
uint8_t psize = 8;
for (struct target_flash *f = t->flash; f; f = f->next) {
if (f->write == stm32f4_flash_write) {
psize = ((struct stm32f4_flash *)f)->psize;
}
}
tc_printf(t, "Flash write parallelism: %s\n",
psize == 32 ? "x32" : "x8");
} else {
uint8_t psize;
if (!strcmp(argv[1], "x8")) {
psize = 8;
} else if (!strcmp(argv[1], "x32")) {
psize = 32;
} else {
tc_printf(t, "usage: monitor psize (x8|x32)\n");
return false;
}
for (struct target_flash *f = t->flash; f; f = f->next) {
if (f->write == stm32f4_flash_write) {
((struct stm32f4_flash *)f)->psize = psize;
}
}
}
return true;
}