Uwe Bonnes dc3fd2eb06 Classify debug messages
Firmware BMP with ENABLE_DEBUG=1 will print WARN and INFO as before.
PC-Hosted BMPwill alway print to stderr. Warn is printed unconditional,
INFO, GDB, TARGET, DONGLE and WIRE will print if their appropriate bit in
cl_debuglevel is set via the -v verbose command line argument.
INFO will go to stdout with -t or -l.
2020-06-05 14:59:30 +02:00

855 lines
24 KiB
C

/*
* This file is part of the Black Magic Debug project.
*
* Copyright (C) 2014 Richard Meadows <richardeoin>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* This file implements Atmel SAM D target specific functions for
* detecting the device, providing the XML memory map and Flash memory
* programming.
*
* Tested with
* * SAMD20E17A (rev C)
* * SAMD20J18A (rev B)
* * SAMD21J18A (rev B)
* * SAML21J17B (rev B)
* *
*/
/* Refer to the SAM D20 Datasheet:
* http://www.atmel.com/Images/Atmel-42129-SAM-D20_Datasheet.pdf
* particularly Sections 12. DSU and 20. NVMCTRL
*/
#include "general.h"
#include "target.h"
#include "target_internal.h"
#include "cortexm.h"
static int samd_flash_erase(struct target_flash *t, target_addr addr, size_t len);
static int samd_flash_write(struct target_flash *f,
target_addr dest, const void *src, size_t len);
bool samd_cmd_erase_all(target *t, int argc, const char **argv);
static bool samd_cmd_lock_flash(target *t, int argc, const char **argv);
static bool samd_cmd_unlock_flash(target *t, int argc, const char **argv);
static bool samd_cmd_unlock_bootprot(target *t, int argc, const char **argv);
static bool samd_cmd_lock_bootprot(target *t, int argc, const char **argv);
static bool samd_cmd_read_userrow(target *t, int argc, const char **argv);
static bool samd_cmd_serial(target *t, int argc, const char **argv);
static bool samd_cmd_mbist(target *t, int argc, const char **argv);
static bool samd_cmd_ssb(target *t, int argc, const char **argv);
const struct command_s samd_cmd_list[] = {
{"erase_mass", (cmd_handler)samd_cmd_erase_all, "Erase entire flash memory"},
{"lock_flash", (cmd_handler)samd_cmd_lock_flash, "Locks flash against spurious commands"},
{"unlock_flash", (cmd_handler)samd_cmd_unlock_flash, "Unlocks flash"},
{"lock_bootprot", (cmd_handler)samd_cmd_lock_bootprot, "Lock the boot protections to maximum"},
{"unlock_bootprot", (cmd_handler)samd_cmd_unlock_bootprot, "Unlock the boot protections to minimum"},
{"user_row", (cmd_handler)samd_cmd_read_userrow, "Prints user row from flash"},
{"serial", (cmd_handler)samd_cmd_serial, "Prints serial number"},
{"mbist", (cmd_handler)samd_cmd_mbist, "Runs the built-in memory test"},
{"set_security_bit", (cmd_handler)samd_cmd_ssb, "Sets the Security Bit"},
{NULL, NULL, NULL}
};
/* Non-Volatile Memory Controller (NVMC) Parameters */
#define SAMD_ROW_SIZE 256
#define SAMD_PAGE_SIZE 64
/* -------------------------------------------------------------------------- */
/* Non-Volatile Memory Controller (NVMC) Registers */
/* -------------------------------------------------------------------------- */
#define SAMD_NVMC 0x41004000
#define SAMD_NVMC_CTRLA (SAMD_NVMC + 0x0)
#define SAMD_NVMC_CTRLB (SAMD_NVMC + 0x04)
#define SAMD_NVMC_PARAM (SAMD_NVMC + 0x08)
#define SAMD_NVMC_INTFLAG (SAMD_NVMC + 0x14)
#define SAMD_NVMC_STATUS (SAMD_NVMC + 0x18)
#define SAMD_NVMC_ADDRESS (SAMD_NVMC + 0x1C)
/* Control A Register (CTRLA) */
#define SAMD_CTRLA_CMD_KEY 0xA500
#define SAMD_CTRLA_CMD_ERASEROW 0x0002
#define SAMD_CTRLA_CMD_WRITEPAGE 0x0004
#define SAMD_CTRLA_CMD_ERASEAUXROW 0x0005
#define SAMD_CTRLA_CMD_WRITEAUXPAGE 0x0006
#define SAMD_CTRLA_CMD_LOCK 0x0040
#define SAMD_CTRLA_CMD_UNLOCK 0x0041
#define SAMD_CTRLA_CMD_PAGEBUFFERCLEAR 0x0044
#define SAMD_CTRLA_CMD_SSB 0x0045
#define SAMD_CTRLA_CMD_INVALL 0x0046
/* Interrupt Flag Register (INTFLAG) */
#define SAMD_NVMC_READY (1 << 0)
/* Non-Volatile Memory Calibration and Auxiliary Registers */
#define SAMD_NVM_USER_ROW_LOW 0x00804000
#define SAMD_NVM_USER_ROW_HIGH 0x00804004
#define SAMD_NVM_CALIBRATION 0x00806020
#define SAMD_NVM_SERIAL(n) (0x0080A00C + (0x30 * ((n + 3) / 4)) + \
(0x4 * n))
/* -------------------------------------------------------------------------- */
/* Device Service Unit (DSU) Registers */
/* -------------------------------------------------------------------------- */
#define SAMD_DSU 0x41002000
#define SAMD_DSU_EXT_ACCESS (SAMD_DSU + 0x100)
#define SAMD_DSU_CTRLSTAT (SAMD_DSU_EXT_ACCESS + 0x0)
#define SAMD_DSU_ADDRESS (SAMD_DSU_EXT_ACCESS + 0x4)
#define SAMD_DSU_LENGTH (SAMD_DSU_EXT_ACCESS + 0x8)
#define SAMD_DSU_DID (SAMD_DSU_EXT_ACCESS + 0x018)
#define SAMD_DSU_PID (SAMD_DSU + 0x1000)
#define SAMD_DSU_CID (SAMD_DSU + 0x1010)
/* Control and Status Register (CTRLSTAT) */
#define SAMD_CTRL_CHIP_ERASE (1 << 4)
#define SAMD_CTRL_MBIST (1 << 3)
#define SAMD_CTRL_CRC (1 << 2)
#define SAMD_STATUSA_PERR (1 << 12)
#define SAMD_STATUSA_FAIL (1 << 11)
#define SAMD_STATUSA_BERR (1 << 10)
#define SAMD_STATUSA_CRSTEXT (1 << 9)
#define SAMD_STATUSA_DONE (1 << 8)
#define SAMD_STATUSB_PROT (1 << 16)
/* Device Identification Register (DID) */
#define SAMD_DID_MASK 0xFF3C0000
#define SAMD_DID_CONST_VALUE 0x10000000
#define SAMD_DID_DEVSEL_MASK 0xFF
#define SAMD_DID_DEVSEL_POS 0
#define SAMD_DID_REVISION_MASK 0x0F
#define SAMD_DID_REVISION_POS 8
#define SAMD_DID_SERIES_MASK 0x1F
#define SAMD_DID_SERIES_POS 16
#define SAMD_DID_FAMILY_MASK 0x1F
#define SAMD_DID_FAMILY_POS 23
/* Peripheral ID */
#define SAMD_PID_MASK 0x00F7FFFF
#define SAMD_PID_CONST_VALUE 0x0001FCD0
/* Component ID */
#define SAMD_CID_VALUE 0xB105100D
/* Family parts */
struct samd_part {
uint8_t devsel;
char pin;
uint8_t mem;
uint8_t variant;
};
static const struct samd_part samd_d21_parts[] = {
{0x00, 'J', 18, 'A'}, /* SAMD21J18A */
{0x01, 'J', 17, 'A'}, /* SAMD21J17A */
{0x02, 'J', 16, 'A'}, /* SAMD21J16A */
{0x03, 'J', 15, 'A'}, /* SAMD21J15A */
{0x05, 'G', 18, 'A'}, /* SAMD21G18A */
{0x06, 'G', 17, 'A'}, /* SAMD21G17A */
{0x07, 'G', 16, 'A'}, /* SAMD21G16A */
{0x08, 'G', 15, 'A'}, /* SAMD21G15A */
{0x0A, 'E', 18, 'A'}, /* SAMD21E18A */
{0x0B, 'E', 17, 'A'}, /* SAMD21E17A */
{0x0C, 'E', 16, 'A'}, /* SAMD21E16A */
{0x0D, 'E', 15, 'A'}, /* SAMD21E15A */
{0x0F, 'G', 18, 'A'}, /* SAMD21G18A (WLCSP) */
{0x10, 'G', 17, 'A'}, /* SAMD21G17A (WLCSP) */
{0x20, 'J', 16, 'B'}, /* SAMD21J16B */
{0x21, 'J', 15, 'B'}, /* SAMD21J15B */
{0x23, 'G', 16, 'B'}, /* SAMD21G16B */
{0x24, 'G', 15, 'B'}, /* SAMD21G15B */
{0x26, 'E', 16, 'B'}, /* SAMD21E16B */
{0x27, 'E', 15, 'B'}, /* SAMD21E15B */
{0x55, 'E', 16, 'B'}, /* SAMD21E16B (WLCSP) */
{0x56, 'E', 15, 'B'}, /* SAMD21E15B (WLCSP) */
{0x62, 'E', 16, 'C'}, /* SAMD21E16C (WLCSP) */
{0x63, 'E', 15, 'C'}, /* SAMD21E15C (WLCSP) */
{0xFF, 0, 0, 0}
};
static const struct samd_part samd_l21_parts[] = {
{0x00, 'J', 18, 'A'}, /* SAML21J18A */
{0x01, 'J', 17, 'A'}, /* SAML21J17A */
{0x02, 'J', 16, 'A'}, /* SAML21J16A */
{0x05, 'G', 18, 'A'}, /* SAML21G18A */
{0x06, 'G', 17, 'A'}, /* SAML21G17A */
{0x07, 'G', 16, 'A'}, /* SAML21G16A */
{0x0A, 'E', 18, 'A'}, /* SAML21E18A */
{0x0B, 'E', 17, 'A'}, /* SAML21E17A */
{0x0C, 'E', 16, 'A'}, /* SAML21E16A */
{0x0D, 'E', 15, 'A'}, /* SAML21E15A */
{0x0F, 'J', 18, 'B'}, /* SAML21J18B */
{0x10, 'J', 17, 'B'}, /* SAML21J17B */
{0x11, 'J', 16, 'B'}, /* SAML21J16B */
{0x14, 'G', 18, 'B'}, /* SAML21G18B */
{0x15, 'G', 17, 'B'}, /* SAML21G17B */
{0x16, 'G', 16, 'B'}, /* SAML21G16B */
{0x19, 'E', 18, 'B'}, /* SAML21E18B */
{0x1A, 'E', 17, 'B'}, /* SAML21E17B */
{0x1B, 'E', 16, 'B'}, /* SAML21E16B */
{0x1C, 'E', 15, 'B'}, /* SAML21E15B */
{0xFF, 0, 0, 0}
};
static const struct samd_part samd_l22_parts[] = {
{0x00, 'N', 18, 'A'}, /* SAML22N18 */
{0x01, 'N', 17, 'A'}, /* SAML22N17 */
{0x02, 'N', 16, 'A'}, /* SAML22N16 */
{0x05, 'J', 18, 'A'}, /* SAML22J18 */
{0x06, 'J', 17, 'A'}, /* SAML22J17 */
{0x07, 'J', 16, 'A'}, /* SAML22J16 */
{0x0A, 'G', 18, 'A'}, /* SAML22G18 */
{0x0B, 'G', 17, 'A'}, /* SAML22G17 */
{0x0C, 'G', 16, 'A'}, /* SAML22G16 */
{0xFF, 0, 0, 0}
};
/**
* Overloads the default cortexm reset function with a version that
* removes the target from extended reset where required.
*/
void samd_reset(target *t)
{
/**
* SRST is not asserted here as it appears to reset the adiv5
* logic, meaning that subsequent adiv5_* calls PLATFORM_FATAL_ERROR.
*
* This is ok as normally you can just connect the debugger and go,
* but if that's not possible (protection or SWCLK being used for
* something else) then having SWCLK low on reset should get you
* debug access (cold-plugging). TODO: Confirm this
*
* See the SAM D20 datasheet ยง12.6 Debug Operation for more
* details.
*
* jtagtap_srst(true);
* jtagtap_srst(false);
*/
/* Read DHCSR here to clear S_RESET_ST bit before reset */
target_mem_read32(t, CORTEXM_DHCSR);
/* Request system reset from NVIC: SRST doesn't work correctly */
/* This could be VECTRESET: 0x05FA0001 (reset only core)
* or SYSRESETREQ: 0x05FA0004 (system reset)
*/
target_mem_write32(t, CORTEXM_AIRCR,
CORTEXM_AIRCR_VECTKEY | CORTEXM_AIRCR_SYSRESETREQ);
/* Exit extended reset */
if (target_mem_read32(t, SAMD_DSU_CTRLSTAT) &
SAMD_STATUSA_CRSTEXT) {
/* Write bit to clear from extended reset */
target_mem_write32(t, SAMD_DSU_CTRLSTAT, SAMD_STATUSA_CRSTEXT);
}
/* Poll for release from reset */
while (target_mem_read32(t, CORTEXM_DHCSR) & CORTEXM_DHCSR_S_RESET_ST);
/* Reset DFSR flags */
target_mem_write32(t, CORTEXM_DFSR, CORTEXM_DFSR_RESETALL);
/* Clear any target errors */
target_check_error(t);
}
/**
* Overloads the default cortexm detached function with a version that
* removes the target from extended reset where required.
*
* Only required for SAM D20 _Revision B_ Silicon
*/
static void
samd20_revB_detach(target *t)
{
cortexm_detach(t);
/* ---- Additional ---- */
/* Exit extended reset */
if (target_mem_read32(t, SAMD_DSU_CTRLSTAT) &
SAMD_STATUSA_CRSTEXT) {
/* Write bit to clear from extended reset */
target_mem_write32(t, SAMD_DSU_CTRLSTAT,
SAMD_STATUSA_CRSTEXT);
}
}
/**
* Overloads the default cortexm halt_resume function with a version
* that removes the target from extended reset where required.
*
* Only required for SAM D20 _Revision B_ Silicon
*/
static void
samd20_revB_halt_resume(target *t, bool step)
{
target_halt_resume(t, step);
/* ---- Additional ---- */
/* Exit extended reset */
if (target_mem_read32(t, SAMD_DSU_CTRLSTAT) & SAMD_STATUSA_CRSTEXT) {
/* Write bit to clear from extended reset */
target_mem_write32(t, SAMD_DSU_CTRLSTAT,
SAMD_STATUSA_CRSTEXT);
}
}
/**
* Overload the default cortexm attach for when the samd is protected.
*
* If the samd is protected then the default cortexm attach will
* fail as the S_HALT bit in the DHCSR will never go high. This
* function allows users to attach on a temporary basis so they can
* rescue the device.
*/
bool samd_protected_attach(target *t)
{
/**
* TODO: Notify the user that we're not really attached and
* they should issue the 'monitor erase_mass' command to
* regain access to the chip.
*/
/* Patch back in the normal cortexm attach for next time */
t->attach = cortexm_attach;
/* Allow attach this time */
return true;
}
/**
* Use the DSU Device Indentification Register to populate a struct
* describing the SAM D device.
*/
struct samd_descr {
char family;
uint8_t series;
char revision;
char pin;
uint8_t mem;
char variant;
char package[3];
};
struct samd_descr samd_parse_device_id(uint32_t did)
{
struct samd_descr samd;
uint8_t i = 0;
const struct samd_part *parts = samd_d21_parts;
memset(samd.package, 0, 3);
uint8_t family = (did >> SAMD_DID_FAMILY_POS)
& SAMD_DID_FAMILY_MASK;
uint8_t series = (did >> SAMD_DID_SERIES_POS)
& SAMD_DID_SERIES_MASK;
uint8_t revision = (did >> SAMD_DID_REVISION_POS)
& SAMD_DID_REVISION_MASK;
uint8_t devsel = (did >> SAMD_DID_DEVSEL_POS)
& SAMD_DID_DEVSEL_MASK;
/* Family */
switch (family) {
case 0: samd.family = 'D'; break;
case 1: samd.family = 'L'; parts = samd_l21_parts; break;
case 2: samd.family = 'C'; break;
}
/* Series */
switch (series) {
case 0: samd.series = 20; break;
case 1: samd.series = 21; break;
case 2:
if (family == 1) {
samd.series = 22;
parts = samd_l22_parts;
} else {
samd.series = 10;
}
break;
case 3: samd.series = 11; break;
default: samd.series = 0; break;
}
/* Revision */
samd.revision = 'A' + revision;
switch (samd.series) {
case 20: /* SAM D20 */
switch (devsel / 5) {
case 0: samd.pin = 'J'; break;
case 1: samd.pin = 'G'; break;
case 2: samd.pin = 'E'; break;
default: samd.pin = 'u'; break;
}
samd.mem = 18 - (devsel % 5);
samd.variant = 'A';
break;
case 21: /* SAM D21/L21 */
case 22: /* SAM L22 */
i = 0;
while (parts[i].devsel != 0xFF) {
if (parts[i].devsel == devsel) {
samd.pin = parts[i].pin;
samd.mem = parts[i].mem;
samd.variant = parts[i].variant;
break;
}
i++;
}
break;
case 10: /* SAM D10 */
case 11: /* SAM D11 */
switch (devsel / 3) {
case 0: samd.package[0] = 'M'; break;
case 1: samd.package[0] = 'S'; samd.package[1] = 'S'; break;
}
samd.pin = 'D';
samd.mem = 14 - (devsel % 3);
samd.variant = 'A';
break;
}
return samd;
}
static void samd_add_flash(target *t, uint32_t addr, size_t length)
{
struct target_flash *f = calloc(1, sizeof(*f));
if (!f) { /* calloc failed: heap exhaustion */
DEBUG_WARN("calloc: failed in %s\n", __func__);
return;
}
f->start = addr;
f->length = length;
f->blocksize = SAMD_ROW_SIZE;
f->erase = samd_flash_erase;
f->write = samd_flash_write;
f->buf_size = SAMD_PAGE_SIZE;
target_add_flash(t, f);
}
static char samd_variant_string[60];
bool samd_probe(target *t)
{
ADIv5_AP_t *ap = cortexm_ap(t);
uint32_t cid = adiv5_ap_read_pidr(ap, SAMD_DSU_CID);
uint32_t pid = adiv5_ap_read_pidr(ap, SAMD_DSU_PID);
/* Check the ARM Coresight Component and Perhiperal IDs */
if ((cid != SAMD_CID_VALUE) ||
((pid & SAMD_PID_MASK) != SAMD_PID_CONST_VALUE))
return false;
/* Read the Device ID */
uint32_t did = target_mem_read32(t, SAMD_DSU_DID);
/* If the Device ID matches */
if ((did & SAMD_DID_MASK) != SAMD_DID_CONST_VALUE)
return false;
uint32_t ctrlstat = target_mem_read32(t, SAMD_DSU_CTRLSTAT);
struct samd_descr samd = samd_parse_device_id(did);
/* Protected? */
bool protected = (ctrlstat & SAMD_STATUSB_PROT);
/* Part String */
if (protected) {
sprintf(samd_variant_string,
"Atmel SAM%c%d%c%d%c%s (rev %c) (PROT=1)",
samd.family,
samd.series, samd.pin, samd.mem,
samd.variant,
samd.package, samd.revision);
} else {
sprintf(samd_variant_string,
"Atmel SAM%c%d%c%d%c%s (rev %c)",
samd.family,
samd.series, samd.pin, samd.mem,
samd.variant,
samd.package, samd.revision);
}
/* Setup Target */
t->driver = samd_variant_string;
t->reset = samd_reset;
if (samd.series == 20 && samd.revision == 'B') {
/**
* These functions check for and
* extended reset. Appears to be
* related to Errata 35.4.1 ref 12015
*/
t->detach = samd20_revB_detach;
t->halt_resume = samd20_revB_halt_resume;
}
if (protected) {
/**
* Overload the default cortexm attach
* for when the samd is protected.
* This function allows users to
* attach on a temporary basis so they
* can rescue the device.
*/
t->attach = samd_protected_attach;
}
target_add_ram(t, 0x20000000, 0x8000);
samd_add_flash(t, 0x00000000, 0x40000);
target_add_commands(t, samd_cmd_list, "SAMD");
/* If we're not in reset here */
if (!platform_srst_get_val()) {
/* We'll have to release the target from
* extended reset to make attach possible */
if (target_mem_read32(t, SAMD_DSU_CTRLSTAT) &
SAMD_STATUSA_CRSTEXT) {
/* Write bit to clear from extended reset */
target_mem_write32(t, SAMD_DSU_CTRLSTAT,
SAMD_STATUSA_CRSTEXT);
}
}
return true;
}
/**
* Temporary (until next reset) flash memory locking / unlocking
*/
static void samd_lock_current_address(target *t)
{
/* Issue the unlock command */
target_mem_write32(t, SAMD_NVMC_CTRLA,
SAMD_CTRLA_CMD_KEY | SAMD_CTRLA_CMD_LOCK);
}
static void samd_unlock_current_address(target *t)
{
/* Issue the unlock command */
target_mem_write32(t, SAMD_NVMC_CTRLA,
SAMD_CTRLA_CMD_KEY | SAMD_CTRLA_CMD_UNLOCK);
}
/**
* Erase flash row by row
*/
static int samd_flash_erase(struct target_flash *f, target_addr addr, size_t len)
{
target *t = f->t;
while (len) {
/* Write address of first word in row to erase it */
/* Must be shifted right for 16-bit address, see Datasheet ยง20.8.8 Address */
target_mem_write32(t, SAMD_NVMC_ADDRESS, addr >> 1);
/* Unlock */
samd_unlock_current_address(t);
/* Issue the erase command */
target_mem_write32(t, SAMD_NVMC_CTRLA,
SAMD_CTRLA_CMD_KEY | SAMD_CTRLA_CMD_ERASEROW);
/* Poll for NVM Ready */
while ((target_mem_read32(t, SAMD_NVMC_INTFLAG) & SAMD_NVMC_READY) == 0)
if (target_check_error(t))
return -1;
/* Lock */
samd_lock_current_address(t);
addr += f->blocksize;
if (len > f->blocksize)
len -= f->blocksize;
else
len = 0;
}
return 0;
}
/**
* Write flash page by page
*/
static int samd_flash_write(struct target_flash *f,
target_addr dest, const void *src, size_t len)
{
target *t = f->t;
/* Write within a single page. This may be part or all of the page */
target_mem_write(t, dest, src, len);
/* Unlock */
samd_unlock_current_address(t);
/* Issue the write page command */
target_mem_write32(t, SAMD_NVMC_CTRLA,
SAMD_CTRLA_CMD_KEY | SAMD_CTRLA_CMD_WRITEPAGE);
/* Poll for NVM Ready */
while ((target_mem_read32(t, SAMD_NVMC_INTFLAG) & SAMD_NVMC_READY) == 0)
if (target_check_error(t))
return -1;
/* Lock */
samd_lock_current_address(t);
return 0;
}
/**
* Uses the Device Service Unit to erase the entire flash
*/
bool samd_cmd_erase_all(target *t, int argc, const char **argv)
{
(void)argc;
(void)argv;
/* Clear the DSU status bits */
target_mem_write32(t, SAMD_DSU_CTRLSTAT,
SAMD_STATUSA_DONE | SAMD_STATUSA_PERR |
SAMD_STATUSA_FAIL);
/* Erase all */
target_mem_write32(t, SAMD_DSU_CTRLSTAT, SAMD_CTRL_CHIP_ERASE);
/* Poll for DSU Ready */
uint32_t status;
while (((status = target_mem_read32(t, SAMD_DSU_CTRLSTAT)) &
(SAMD_STATUSA_DONE | SAMD_STATUSA_PERR | SAMD_STATUSA_FAIL)) == 0)
if (target_check_error(t))
return false;
/* Test the protection error bit in Status A */
if (status & SAMD_STATUSA_PERR) {
tc_printf(t, "Erase failed due to a protection error.\n");
return true;
}
/* Test the fail bit in Status A */
if (status & SAMD_STATUSA_FAIL) {
tc_printf(t, "Erase failed.\n");
return true;
}
tc_printf(t, "Erase successful!\n");
return true;
}
/**
* Sets the NVM region lock bits in the User Row. This value is read
* at startup as the default value for the lock bits, and hence does
* not take effect until a reset.
*
* 0x0000 = Lock, 0xFFFF = Unlock (default)
*/
static bool samd_set_flashlock(target *t, uint16_t value, const char **argv)
{
(void)argv;
uint32_t high = target_mem_read32(t, SAMD_NVM_USER_ROW_HIGH);
uint32_t low = target_mem_read32(t, SAMD_NVM_USER_ROW_LOW);
/* Write address of a word in the row to erase it */
/* Must be shifted right for 16-bit address, see Datasheet ยง20.8.8 Address */
target_mem_write32(t, SAMD_NVMC_ADDRESS, SAMD_NVM_USER_ROW_LOW >> 1);
/* Issue the erase command */
target_mem_write32(t, SAMD_NVMC_CTRLA,
SAMD_CTRLA_CMD_KEY | SAMD_CTRLA_CMD_ERASEAUXROW);
/* Poll for NVM Ready */
while ((target_mem_read32(t, SAMD_NVMC_INTFLAG) & SAMD_NVMC_READY) == 0)
if (target_check_error(t))
return -1;
/* Modify the high byte of the user row */
high = (high & 0x0000FFFF) | ((value << 16) & 0xFFFF0000);
/* Write back */
target_mem_write32(t, SAMD_NVM_USER_ROW_LOW, low);
target_mem_write32(t, SAMD_NVM_USER_ROW_HIGH, high);
/* Issue the page write command */
target_mem_write32(t, SAMD_NVMC_CTRLA,
SAMD_CTRLA_CMD_KEY | SAMD_CTRLA_CMD_WRITEAUXPAGE);
return true;
}
static bool samd_cmd_lock_flash(target *t, int argc, const char **argv)
{
(void)argc;
(void)argv;
return samd_set_flashlock(t, 0x0000, NULL);
}
static bool samd_cmd_unlock_flash(target *t, int argc, const char **argv)
{
(void)argc;
(void)argv;
return samd_set_flashlock(t, 0xFFFF, NULL);
}
static bool samd_set_bootprot(target *t, uint16_t value, const char **argv)
{
(void)argv;
uint32_t high = target_mem_read32(t, SAMD_NVM_USER_ROW_HIGH);
uint32_t low = target_mem_read32(t, SAMD_NVM_USER_ROW_LOW);
/* Write address of a word in the row to erase it */
/* Must be shifted right for 16-bit address, see Datasheet ยง20.8.8 Address */
target_mem_write32(t, SAMD_NVMC_ADDRESS, SAMD_NVM_USER_ROW_LOW >> 1);
/* Issue the erase command */
target_mem_write32(t, SAMD_NVMC_CTRLA,
SAMD_CTRLA_CMD_KEY | SAMD_CTRLA_CMD_ERASEAUXROW);
/* Poll for NVM Ready */
while ((target_mem_read32(t, SAMD_NVMC_INTFLAG) & SAMD_NVMC_READY) == 0)
if (target_check_error(t))
return -1;
/* Modify the low word of the user row */
low = (low & 0xFFFFFFF8) | ((value << 0 ) & 0x00000007);
/* Write back */
target_mem_write32(t, SAMD_NVM_USER_ROW_LOW, low);
target_mem_write32(t, SAMD_NVM_USER_ROW_HIGH, high);
/* Issue the page write command */
target_mem_write32(t, SAMD_NVMC_CTRLA,
SAMD_CTRLA_CMD_KEY | SAMD_CTRLA_CMD_WRITEAUXPAGE);
return true;
}
static bool samd_cmd_lock_bootprot(target *t, int argc, const char **argv)
{
(void)argc;
(void)argv;
return samd_set_bootprot(t, 0, NULL);
}
static bool samd_cmd_unlock_bootprot(target *t, int argc, const char **argv)
{
(void)argc;
(void)argv;
return samd_set_bootprot(t, 7, NULL);
}
static bool samd_cmd_read_userrow(target *t, int argc, const char **argv)
{
(void)argc;
(void)argv;
tc_printf(t, "User Row: 0x%08x%08x\n",
target_mem_read32(t, SAMD_NVM_USER_ROW_HIGH),
target_mem_read32(t, SAMD_NVM_USER_ROW_LOW));
return true;
}
/**
* Reads the 128-bit serial number from the NVM
*/
static bool samd_cmd_serial(target *t, int argc, const char **argv)
{
(void)argc;
(void)argv;
tc_printf(t, "Serial Number: 0x");
for (uint32_t i = 0; i < 4; i++) {
tc_printf(t, "%08x", target_mem_read32(t, SAMD_NVM_SERIAL(i)));
}
tc_printf(t, "\n");
return true;
}
/**
* Returns the size (in bytes) of the current SAM D20's flash memory.
*/
static uint32_t samd_flash_size(target *t)
{
/* Read the Device ID */
uint32_t did = target_mem_read32(t, SAMD_DSU_DID);
/* Mask off the device select bits */
uint8_t devsel = did & SAMD_DID_DEVSEL_MASK;
/* Shift the maximum flash size (256KB) down as appropriate */
return (0x40000 >> (devsel % 5));
}
/**
* Runs the Memory Built In Self Test (MBIST)
*/
static bool samd_cmd_mbist(target *t, int argc, const char **argv)
{
(void)argc;
(void)argv;
/* Write the memory parameters to the DSU */
target_mem_write32(t, SAMD_DSU_ADDRESS, 0);
target_mem_write32(t, SAMD_DSU_LENGTH, samd_flash_size(t));
/* Clear the fail bit */
target_mem_write32(t, SAMD_DSU_CTRLSTAT, SAMD_STATUSA_FAIL);
/* Write the MBIST command */
target_mem_write32(t, SAMD_DSU_CTRLSTAT, SAMD_CTRL_MBIST);
/* Poll for DSU Ready */
uint32_t status;
while (((status = target_mem_read32(t, SAMD_DSU_CTRLSTAT)) &
(SAMD_STATUSA_DONE | SAMD_STATUSA_PERR | SAMD_STATUSA_FAIL)) == 0)
if (target_check_error(t))
return false;
/* Test the protection error bit in Status A */
if (status & SAMD_STATUSA_PERR) {
tc_printf(t, "MBIST not run due to protection error.\n");
return true;
}
/* Test the fail bit in Status A */
if (status & SAMD_STATUSA_FAIL) {
tc_printf(t, "MBIST Fail @ 0x%08x\n",
target_mem_read32(t, SAMD_DSU_ADDRESS));
} else {
tc_printf(t, "MBIST Passed!\n");
}
return true;
}
/**
* Sets the security bit
*/
static bool samd_cmd_ssb(target *t, int argc, const char **argv)
{
(void)argc;
(void)argv;
/* Issue the ssb command */
target_mem_write32(t, SAMD_NVMC_CTRLA,
SAMD_CTRLA_CMD_KEY | SAMD_CTRLA_CMD_SSB);
/* Poll for NVM Ready */
while ((target_mem_read32(t, SAMD_NVMC_INTFLAG) & SAMD_NVMC_READY) == 0)
if (target_check_error(t))
return -1;
tc_printf(t, "Set the security bit! "
"You will need to issue 'monitor erase_mass' to clear this.\n");
return true;
}