2019-08-28 11:39:03 +02:00

194 lines
5.0 KiB
C

/*
* This file is part of the Black Magic Debug project.
*
* Copyright (C) 2011 Black Sphere Technologies Ltd.
* Written by Gareth McMullin <gareth@blacksphere.co.nz>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* This file implements the platform specific functions for ST-Link
* on the STM8S discovery and STM32F103 Minimum System Development Board, also
* known as bluepill.
*/
#include "general.h"
#include "cdcacm.h"
#include "usbuart.h"
#include <libopencm3/stm32/f1/rcc.h>
#include <libopencm3/cm3/scb.h>
#include <libopencm3/cm3/scs.h>
#include <libopencm3/cm3/nvic.h>
#include <libopencm3/stm32/usart.h>
#include <libopencm3/usb/usbd.h>
#include <libopencm3/stm32/f1/adc.h>
uint32_t led_error_port;
uint16_t led_error_pin;
static uint8_t rev;
static void adc_init(void);
int platform_hwversion(void)
{
return rev;
}
void platform_init(void)
{
uint32_t data;
SCS_DEMCR |= SCS_DEMCR_VC_MON_EN;
#ifdef ENABLE_DEBUG
void initialise_monitor_handles(void);
initialise_monitor_handles();
#endif
rcc_clock_setup_in_hse_8mhz_out_72mhz();
rev = detect_rev();
/* Enable peripherals */
rcc_periph_clock_enable(RCC_AFIO);
rcc_periph_clock_enable(RCC_CRC);
/* Unmap JTAG Pins so we can reuse as GPIO */
data = AFIO_MAPR;
data &= ~AFIO_MAPR_SWJ_MASK;
data |= AFIO_MAPR_SWJ_CFG_JTAG_OFF_SW_OFF;
AFIO_MAPR = data;
/* Setup JTAG GPIO ports */
gpio_set_mode(TMS_PORT, GPIO_MODE_OUTPUT_50_MHZ,
GPIO_CNF_INPUT_FLOAT, TMS_PIN);
gpio_set_mode(TCK_PORT, GPIO_MODE_OUTPUT_50_MHZ,
GPIO_CNF_OUTPUT_PUSHPULL, TCK_PIN);
gpio_set_mode(TDI_PORT, GPIO_MODE_OUTPUT_50_MHZ,
GPIO_CNF_OUTPUT_PUSHPULL, TDI_PIN);
gpio_set_mode(TDO_PORT, GPIO_MODE_INPUT,
GPIO_CNF_INPUT_FLOAT, TDO_PIN);
switch (rev) {
case 0:
/* LED GPIO already set in detect_rev()*/
led_error_port = GPIOA;
led_error_pin = GPIO8;
adc_init();
break;
case 1:
led_error_port = GPIOC;
led_error_pin = GPIO13;
/* Enable MCO Out on PA8*/
RCC_CFGR &= ~(0xf << 24);
RCC_CFGR |= (RCC_CFGR_MCO_HSE << 24);
gpio_set_mode(GPIOA, GPIO_MODE_OUTPUT_50_MHZ,
GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, GPIO8);
break;
}
platform_srst_set_val(false);
/* Remap TIM2 TIM2_REMAP[1]
* TIM2_CH1_ETR -> PA15 (TDI, set as output above)
* TIM2_CH2 -> PB3 (TDO)
*/
data = AFIO_MAPR;
data &= ~AFIO_MAPR_TIM2_REMAP_FULL_REMAP;
data |= AFIO_MAPR_TIM2_REMAP_PARTIAL_REMAP1;
AFIO_MAPR = data;
/* Relocate interrupt vector table here */
extern int vector_table;
SCB_VTOR = (uint32_t)&vector_table;
platform_timing_init();
cdcacm_init();
usbuart_init();
}
void platform_srst_set_val(bool assert)
{
/* We reuse JSRST as SRST.*/
if (assert) {
gpio_set_mode(JRST_PORT, GPIO_MODE_OUTPUT_50_MHZ,
GPIO_CNF_OUTPUT_OPENDRAIN, JRST_PIN);
/* Wait until requested value is active.*/
while (gpio_get(JRST_PORT, JRST_PIN))
gpio_clear(JRST_PORT, JRST_PIN);
} else {
gpio_set_mode(JRST_PORT, GPIO_MODE_INPUT,
GPIO_CNF_INPUT_PULL_UPDOWN, JRST_PIN);
/* Wait until requested value is active.*/
while (!gpio_get(JRST_PORT, JRST_PIN))
gpio_set(JRST_PORT, JRST_PIN);
}
}
bool platform_srst_get_val(void)
{
return gpio_get(JRST_PORT, JRST_PIN) == 0;
}
static void adc_init(void)
{
rcc_periph_clock_enable(RCC_ADC1);
/* PA0 measures CN7 Pin 1 VDD divided by two.*/
gpio_set_mode(GPIOA, GPIO_MODE_INPUT,
GPIO_CNF_INPUT_ANALOG, GPIO0);
adc_power_off(ADC1);
adc_disable_scan_mode(ADC1);
adc_set_single_conversion_mode(ADC1);
adc_disable_external_trigger_regular(ADC1);
adc_set_right_aligned(ADC1);
adc_set_sample_time_on_all_channels(ADC1, ADC_SMPR_SMP_28DOT5CYC);
adc_power_on(ADC1);
/* Wait for ADC starting up. */
for (int i = 0; i < 800000; i++) /* Wait a bit. */
__asm__("nop");
adc_reset_calibration(ADC1);
adc_calibrate(ADC1);
}
const char *platform_target_voltage(void)
{
static char ret[] = "0.0V";
const uint8_t channel = 0;
switch (rev) {
case 0:
adc_set_regular_sequence(ADC1, 1, (uint8_t*)&channel);
adc_start_conversion_direct(ADC1);
/* Wait for end of conversion. */
while (!adc_eoc(ADC1));
/* Referencevoltage is 3.3 Volt, measured voltage is half of
* actual voltag. */
uint32_t val_in_100mV = (adc_read_regular(ADC1) * 33 * 2) / 4096;
ret[0] = '0' + val_in_100mV / 10;
ret[2] = '0' + val_in_100mV % 10;
return ret;
}
return "ABSENT!";
}
void set_idle_state(int state)
{
switch (rev) {
case 0:
gpio_set_val(GPIOA, GPIO8, state);
break;
case 1:
gpio_set_val(GPIOC, GPIO13, (!state));
break;
}
}