blackmagic/src/target/cortexm.c

1672 lines
49 KiB
C

/*
* This file is part of the Black Magic Debug project.
*
* Copyright (C) 2012-2020 Black Sphere Technologies Ltd.
* Written by Gareth McMullin <gareth@blacksphere.co.nz>,
* Koen De Vleeschauwer and Uwe Bonnes
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* This file implements debugging functionality specific to ARM
* the Cortex-M3 core. This should be generic to ARMv7-M as it is
* implemented according to the "ARMv7-M Architectue Reference Manual",
* ARM doc DDI0403C.
*
* Also supports Cortex-M0 / ARMv6-M
*/
#include "general.h"
#include "exception.h"
#include "adiv5.h"
#include "target.h"
#include "target_internal.h"
#include "cortexm.h"
#include "platform.h"
#include "command.h"
#include "gdb_packet.h"
#include <unistd.h>
#if PC_HOSTED == 1
/*
* pc-hosted semihosting does keyboard, file and screen i/o on the system
* where blackmagic_hosted runs, using linux system calls.
* semihosting in the probe does keyboard, file and screen i/o on the system
* where gdb runs, using gdb file i/o calls.
*/
#define TARGET_NULL ((target_addr)0)
#include <errno.h>
#include <time.h>
#include <sys/time.h>
#include <sys/stat.h>
#include <fcntl.h>
#endif
static const char cortexm_driver_str[] = "ARM Cortex-M";
static bool cortexm_vector_catch(target *t, int argc, char *argv[]);
const struct command_s cortexm_cmd_list[] = {
{"vector_catch", (cmd_handler)cortexm_vector_catch, "Catch exception vectors"},
{NULL, NULL, NULL}
};
/* target options recognised by the Cortex-M target */
#define TOPT_FLAVOUR_V6M (1<<0) /* if not set, target is assumed to be v7m */
#define TOPT_FLAVOUR_V7MF (1<<1) /* if set, floating-point enabled. */
static void cortexm_regs_read(target *t, void *data);
static void cortexm_regs_write(target *t, const void *data);
static uint32_t cortexm_pc_read(target *t);
static ssize_t cortexm_reg_read(target *t, int reg, void *data, size_t max);
static ssize_t cortexm_reg_write(target *t, int reg, const void *data, size_t max);
static void cortexm_reset(target *t);
static enum target_halt_reason cortexm_halt_poll(target *t, target_addr *watch);
static void cortexm_halt_resume(target *t, bool step);
static void cortexm_halt_request(target *t);
static int cortexm_fault_unwind(target *t);
static int cortexm_breakwatch_set(target *t, struct breakwatch *);
static int cortexm_breakwatch_clear(target *t, struct breakwatch *);
static target_addr cortexm_check_watch(target *t);
#define CORTEXM_MAX_WATCHPOINTS 4 /* architecture says up to 15, no implementation has > 4 */
#define CORTEXM_MAX_BREAKPOINTS 8 /* architecture says up to 127, no implementation has > 8 */
static int cortexm_hostio_request(target *t);
static uint32_t time0_sec = UINT32_MAX; /* sys_clock time origin */
struct cortexm_priv {
ADIv5_AP_t *ap;
bool stepping;
bool on_bkpt;
/* Watchpoint unit status */
bool hw_watchpoint[CORTEXM_MAX_WATCHPOINTS];
unsigned flash_patch_revision;
unsigned hw_watchpoint_max;
/* Breakpoint unit status */
bool hw_breakpoint[CORTEXM_MAX_BREAKPOINTS];
unsigned hw_breakpoint_max;
/* Copy of DEMCR for vector-catch */
uint32_t demcr;
/* Cache parameters */
bool has_cache;
uint32_t dcache_minline;
};
/* Register number tables */
static const uint32_t regnum_cortex_m[] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* standard r0-r15 */
0x10, /* xpsr */
0x11, /* msp */
0x12, /* psp */
0x14 /* special */
};
static const uint32_t regnum_cortex_mf[] = {
0x21, /* fpscr */
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, /* s0-s7 */
0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, /* s8-s15 */
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, /* s16-s23 */
0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, /* s24-s31 */
};
static const char tdesc_cortex_m[] =
"<?xml version=\"1.0\"?>"
"<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
"<target>"
" <architecture>arm</architecture>"
" <feature name=\"org.gnu.gdb.arm.m-profile\">"
" <reg name=\"r0\" bitsize=\"32\"/>"
" <reg name=\"r1\" bitsize=\"32\"/>"
" <reg name=\"r2\" bitsize=\"32\"/>"
" <reg name=\"r3\" bitsize=\"32\"/>"
" <reg name=\"r4\" bitsize=\"32\"/>"
" <reg name=\"r5\" bitsize=\"32\"/>"
" <reg name=\"r6\" bitsize=\"32\"/>"
" <reg name=\"r7\" bitsize=\"32\"/>"
" <reg name=\"r8\" bitsize=\"32\"/>"
" <reg name=\"r9\" bitsize=\"32\"/>"
" <reg name=\"r10\" bitsize=\"32\"/>"
" <reg name=\"r11\" bitsize=\"32\"/>"
" <reg name=\"r12\" bitsize=\"32\"/>"
" <reg name=\"sp\" bitsize=\"32\" type=\"data_ptr\"/>"
" <reg name=\"lr\" bitsize=\"32\" type=\"code_ptr\"/>"
" <reg name=\"pc\" bitsize=\"32\" type=\"code_ptr\"/>"
" <reg name=\"xpsr\" bitsize=\"32\"/>"
" <reg name=\"msp\" bitsize=\"32\" save-restore=\"no\" type=\"data_ptr\"/>"
" <reg name=\"psp\" bitsize=\"32\" save-restore=\"no\" type=\"data_ptr\"/>"
" <reg name=\"primask\" bitsize=\"8\" save-restore=\"no\"/>"
" <reg name=\"basepri\" bitsize=\"8\" save-restore=\"no\"/>"
" <reg name=\"faultmask\" bitsize=\"8\" save-restore=\"no\"/>"
" <reg name=\"control\" bitsize=\"8\" save-restore=\"no\"/>"
" </feature>"
"</target>";
static const char tdesc_cortex_mf[] =
"<?xml version=\"1.0\"?>"
"<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
"<target>"
" <architecture>arm</architecture>"
" <feature name=\"org.gnu.gdb.arm.m-profile\">"
" <reg name=\"r0\" bitsize=\"32\"/>"
" <reg name=\"r1\" bitsize=\"32\"/>"
" <reg name=\"r2\" bitsize=\"32\"/>"
" <reg name=\"r3\" bitsize=\"32\"/>"
" <reg name=\"r4\" bitsize=\"32\"/>"
" <reg name=\"r5\" bitsize=\"32\"/>"
" <reg name=\"r6\" bitsize=\"32\"/>"
" <reg name=\"r7\" bitsize=\"32\"/>"
" <reg name=\"r8\" bitsize=\"32\"/>"
" <reg name=\"r9\" bitsize=\"32\"/>"
" <reg name=\"r10\" bitsize=\"32\"/>"
" <reg name=\"r11\" bitsize=\"32\"/>"
" <reg name=\"r12\" bitsize=\"32\"/>"
" <reg name=\"sp\" bitsize=\"32\" type=\"data_ptr\"/>"
" <reg name=\"lr\" bitsize=\"32\" type=\"code_ptr\"/>"
" <reg name=\"pc\" bitsize=\"32\" type=\"code_ptr\"/>"
" <reg name=\"xpsr\" bitsize=\"32\"/>"
" <reg name=\"msp\" bitsize=\"32\" save-restore=\"no\" type=\"data_ptr\"/>"
" <reg name=\"psp\" bitsize=\"32\" save-restore=\"no\" type=\"data_ptr\"/>"
" <reg name=\"primask\" bitsize=\"8\" save-restore=\"no\"/>"
" <reg name=\"basepri\" bitsize=\"8\" save-restore=\"no\"/>"
" <reg name=\"faultmask\" bitsize=\"8\" save-restore=\"no\"/>"
" <reg name=\"control\" bitsize=\"8\" save-restore=\"no\"/>"
" </feature>"
" <feature name=\"org.gnu.gdb.arm.vfp\">"
" <reg name=\"fpscr\" bitsize=\"32\"/>"
" <reg name=\"d0\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d1\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d2\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d3\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d4\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d5\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d6\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d7\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d8\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d9\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d10\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d11\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d12\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d13\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d14\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d15\" bitsize=\"64\" type=\"float\"/>"
" </feature>"
"</target>";
ADIv5_AP_t *cortexm_ap(target *t)
{
return ((struct cortexm_priv *)t->priv)->ap;
}
static void cortexm_cache_clean(target *t, target_addr addr, size_t len, bool invalidate)
{
struct cortexm_priv *priv = t->priv;
if (!priv->has_cache || (priv->dcache_minline == 0))
return;
uint32_t cache_reg = invalidate ? CORTEXM_DCCIMVAC : CORTEXM_DCCMVAC;
size_t minline = priv->dcache_minline;
/* flush data cache for RAM regions that intersect requested region */
target_addr mem_end = addr + len; /* following code is NOP if wraparound */
/* requested region is [src, src_end) */
for (struct target_ram *r = t->ram; r; r = r->next) {
target_addr ram = r->start;
target_addr ram_end = r->start + r->length;
/* RAM region is [ram, ram_end) */
if (addr > ram)
ram = addr;
if (mem_end < ram_end)
ram_end = mem_end;
/* intersection is [ram, ram_end) */
for (ram &= ~(minline-1); ram < ram_end; ram += minline)
adiv5_mem_write(cortexm_ap(t), cache_reg, &ram, 4);
}
}
static void cortexm_mem_read(target *t, void *dest, target_addr src, size_t len)
{
cortexm_cache_clean(t, src, len, false);
adiv5_mem_read(cortexm_ap(t), dest, src, len);
}
static void cortexm_mem_write(target *t, target_addr dest, const void *src, size_t len)
{
cortexm_cache_clean(t, dest, len, true);
adiv5_mem_write(cortexm_ap(t), dest, src, len);
}
static bool cortexm_check_error(target *t)
{
ADIv5_AP_t *ap = cortexm_ap(t);
return adiv5_dp_error(ap->dp) != 0;
}
static void cortexm_priv_free(void *priv)
{
adiv5_ap_unref(((struct cortexm_priv *)priv)->ap);
free(priv);
}
bool cortexm_probe(ADIv5_AP_t *ap)
{
target *t;
t = target_new();
if (!t) {
return false;
}
adiv5_ap_ref(ap);
t->t_designer = ap->ap_designer;
t->idcode = ap->ap_partno;
struct cortexm_priv *priv = calloc(1, sizeof(*priv));
if (!priv) { /* calloc failed: heap exhaustion */
DEBUG_WARN("calloc: failed in %s\n", __func__);
return false;
}
t->priv = priv;
t->priv_free = cortexm_priv_free;
priv->ap = ap;
t->check_error = cortexm_check_error;
t->mem_read = cortexm_mem_read;
t->mem_write = cortexm_mem_write;
t->driver = cortexm_driver_str;
/* The CPUID register is defined in the ARMv7-M and ARMv8-M
* architecture manuals. The PARTNO field is implementation defined,
* that is, the actual values are found in the Technical Reference Manual
* for each Cortex-M core.
*/
t->cpuid = target_mem_read32(t, CORTEXM_CPUID);
uint32_t cpuid_partno = t->cpuid & CPUID_PARTNO_MASK;
switch (cpuid_partno) {
case CORTEX_M33:
t->core = "M33";
break;
case CORTEX_M23:
t->core = "M23";
break;
case CORTEX_M3:
t->core = "M3";
break;
case CORTEX_M4:
t->core = "M4";
break;
case CORTEX_M7:
t->core = "M7";
if (((t->cpuid & CPUID_REVISION_MASK) == 0) &&
(t->cpuid & CPUID_PATCH_MASK) < 2) {
DEBUG_WARN("Silicon bug: Single stepping will enter pending "
"exception handler with this M7 core revision!\n");
}
break;
case CORTEX_M0P:
t->core = "M0+";
break;
case CORTEX_M0:
t->core = "M0";
break;
default:
DEBUG_WARN("Unexpected CortexM CPUID partno %04" PRIx32 "\n",
cpuid_partno);
}
DEBUG_INFO("CPUID 0x%08" PRIx32 " (%s var %" PRIx32 " rev %" PRIx32 ")\n",
t->cpuid,
t->core, (t->cpuid & CPUID_REVISION_MASK) >> 20,
t->cpuid & CPUID_PATCH_MASK);
t->attach = cortexm_attach;
t->detach = cortexm_detach;
/* Should probe here to make sure it's Cortex-M3 */
t->tdesc = tdesc_cortex_m;
t->regs_read = cortexm_regs_read;
t->regs_write = cortexm_regs_write;
t->reg_read = cortexm_reg_read;
t->reg_write = cortexm_reg_write;
t->reset = cortexm_reset;
t->halt_request = cortexm_halt_request;
t->halt_poll = cortexm_halt_poll;
t->halt_resume = cortexm_halt_resume;
t->regs_size = sizeof(regnum_cortex_m);
t->breakwatch_set = cortexm_breakwatch_set;
t->breakwatch_clear = cortexm_breakwatch_clear;
target_add_commands(t, cortexm_cmd_list, cortexm_driver_str);
/* Probe for FP extension */
uint32_t cpacr = target_mem_read32(t, CORTEXM_CPACR);
cpacr |= 0x00F00000; /* CP10 = 0b11, CP11 = 0b11 */
target_mem_write32(t, CORTEXM_CPACR, cpacr);
if (target_mem_read32(t, CORTEXM_CPACR) == cpacr) {
t->target_options |= TOPT_FLAVOUR_V7MF;
t->regs_size += sizeof(regnum_cortex_mf);
t->tdesc = tdesc_cortex_mf;
}
/* Default vectors to catch */
priv->demcr = CORTEXM_DEMCR_TRCENA | CORTEXM_DEMCR_VC_HARDERR |
CORTEXM_DEMCR_VC_CORERESET;
/* Check cache type */
uint32_t ctr = target_mem_read32(t, CORTEXM_CTR);
if ((ctr >> 29) == 4) {
priv->has_cache = true;
priv->dcache_minline = 4 << (ctr & 0xf);
} else {
target_check_error(t);
}
#define PROBE(x) \
do { if ((x)(t)) {return true;} else target_check_error(t); } while (0)
switch (ap->ap_designer) {
case AP_DESIGNER_FREESCALE:
PROBE(kinetis_probe);
if (ap->ap_partno == 0x88c) {
t->driver = "MIMXRT10xx(no flash)";
target_halt_resume(t, 0);
}
break;
case AP_DESIGNER_CS:
PROBE(stm32f1_probe);
break;
case AP_DESIGNER_GIGADEVICE:
PROBE(gd32f1_probe);
break;
case AP_DESIGNER_STM:
PROBE(stm32f1_probe);
PROBE(stm32f4_probe);
PROBE(stm32h7_probe);
PROBE(stm32l0_probe);
PROBE(stm32l4_probe);
PROBE(stm32g0_probe);
break;
case AP_DESIGNER_CYPRESS:
DEBUG_WARN("Unhandled Cypress device\n");
break;
case AP_DESIGNER_INFINEON:
DEBUG_WARN("Unhandled Infineon device\n");
break;
case AP_DESIGNER_NORDIC:
PROBE(nrf51_probe);
break;
case AP_DESIGNER_ATMEL:
PROBE(sam4l_probe);
PROBE(samd_probe);
PROBE(samx5x_probe);
break;
case AP_DESIGNER_ENERGY_MICRO:
PROBE(efm32_probe);
break;
case AP_DESIGNER_TEXAS:
PROBE(msp432_probe);
break;
case AP_DESIGNER_SPECULAR:
PROBE(lpc11xx_probe); /* LPC845 */
break;
default:
if (ap->ap_designer != AP_DESIGNER_ARM) {
/* Report unexpected designers */
#if PC_HOSTED == 0
gdb_outf("Please report Designer %3x and Partno %3x and the "
"probed device\n", ap->ap_designer, ap->ap_partno);
#else
DEBUG_WARN("Please report Designer %3x and Partno %3x and the "
"probed device\n", ap->ap_designer, ap->ap_partno);
#endif
}
if (ap->ap_partno == 0x4c0) { /* Cortex-M0+ ROM */
if ((ap->dp->targetid & 0xfff) == AP_DESIGNER_RASPBERRY)
PROBE(rp_probe);
} else if (ap->ap_partno == 0x4c3) { /* Cortex-M3 ROM */
PROBE(stm32f1_probe); /* Care for STM32F1 clones */
PROBE(lpc15xx_probe); /* Thanks to JojoS for testing */
} else if (ap->ap_partno == 0x471) { /* Cortex-M0 ROM */
PROBE(lpc11xx_probe); /* LPC24C11 */
PROBE(lpc43xx_probe);
} else if (ap->ap_partno == 0x4c4) { /* Cortex-M4 ROM */
/* The LPC546xx and LPC43xx parts present with the same AP ROM Part
Number, so we need to probe both. Unfortunately, when probing for
the LPC43xx when the target is actually an LPC546xx, the memory
location checked is illegal for the LPC546xx and puts the chip into
Lockup, requiring a RST pulse to recover. Instead, make sure to
probe for the LPC546xx first, which experimentally doesn't harm
LPC43xx detection. */
PROBE(lpc546xx_probe);
PROBE(lpc43xx_probe);
PROBE(kinetis_probe); /* Older K-series */
} else if (ap->ap_partno == 0x4cb) { /* Cortex-M23 ROM */
PROBE(gd32f1_probe); /* GD32E23x uses GD32F1 peripherals */
} else if (ap->ap_partno == 0x4c0) { /* Cortex-M0+ ROM */
PROBE(lpc11xx_probe); /* some of the LPC8xx series, like LPC802 */
}
/* Info on PIDR of these parts wanted! */
PROBE(sam3x_probe);
PROBE(lmi_probe);
PROBE(ke04_probe);
PROBE(lpc17xx_probe);
}
#undef PROBE
/* Restart the CortexM we stopped for Romtable scan. Allow pure debug.*/
target_halt_resume(t, 0);
return true;
}
bool cortexm_attach(target *t)
{
struct cortexm_priv *priv = t->priv;
unsigned i;
uint32_t r;
/* Clear any pending fault condition */
target_check_error(t);
target_halt_request(t);
/* Request halt on reset */
target_mem_write32(t, CORTEXM_DEMCR, priv->demcr);
/* Reset DFSR flags */
target_mem_write32(t, CORTEXM_DFSR, CORTEXM_DFSR_RESETALL);
/* size the break/watchpoint units */
priv->hw_breakpoint_max = CORTEXM_MAX_BREAKPOINTS;
r = target_mem_read32(t, CORTEXM_FPB_CTRL);
if (((r >> 4) & 0xf) < priv->hw_breakpoint_max) /* only look at NUM_COMP1 */
priv->hw_breakpoint_max = (r >> 4) & 0xf;
priv->flash_patch_revision = (r >> 28);
priv->hw_watchpoint_max = CORTEXM_MAX_WATCHPOINTS;
r = target_mem_read32(t, CORTEXM_DWT_CTRL);
if ((r >> 28) > priv->hw_watchpoint_max)
priv->hw_watchpoint_max = r >> 28;
/* Clear any stale breakpoints */
for(i = 0; i < priv->hw_breakpoint_max; i++) {
target_mem_write32(t, CORTEXM_FPB_COMP(i), 0);
priv->hw_breakpoint[i] = 0;
}
/* Clear any stale watchpoints */
for(i = 0; i < priv->hw_watchpoint_max; i++) {
target_mem_write32(t, CORTEXM_DWT_FUNC(i), 0);
priv->hw_watchpoint[i] = 0;
}
/* Flash Patch Control Register: set ENABLE */
target_mem_write32(t, CORTEXM_FPB_CTRL,
CORTEXM_FPB_CTRL_KEY | CORTEXM_FPB_CTRL_ENABLE);
uint32_t dhcsr = target_mem_read32(t, CORTEXM_DHCSR);
dhcsr = target_mem_read32(t, CORTEXM_DHCSR);
if (dhcsr & CORTEXM_DHCSR_S_RESET_ST) {
platform_srst_set_val(false);
platform_timeout timeout;
platform_timeout_set(&timeout, 1000);
while (1) {
uint32_t dhcsr = target_mem_read32(t, CORTEXM_DHCSR);
if (!(dhcsr & CORTEXM_DHCSR_S_RESET_ST))
break;
if (platform_timeout_is_expired(&timeout)) {
DEBUG_WARN("Error releasing from srst\n");
return false;
}
}
}
return true;
}
void cortexm_detach(target *t)
{
struct cortexm_priv *priv = t->priv;
unsigned i;
/* Clear any stale breakpoints */
for(i = 0; i < priv->hw_breakpoint_max; i++)
target_mem_write32(t, CORTEXM_FPB_COMP(i), 0);
/* Clear any stale watchpoints */
for(i = 0; i < priv->hw_watchpoint_max; i++)
target_mem_write32(t, CORTEXM_DWT_FUNC(i), 0);
/* Restort DEMCR*/
ADIv5_AP_t *ap = cortexm_ap(t);
target_mem_write32(t, CORTEXM_DEMCR, ap->ap_cortexm_demcr);
/* Disable debug */
target_mem_write32(t, CORTEXM_DHCSR, CORTEXM_DHCSR_DBGKEY);
}
enum { DB_DHCSR, DB_DCRSR, DB_DCRDR, DB_DEMCR };
static void cortexm_regs_read(target *t, void *data)
{
uint32_t *regs = data;
ADIv5_AP_t *ap = cortexm_ap(t);
unsigned i;
#if PC_HOSTED == 1
if ((ap->dp->ap_reg_read) && (ap->dp->ap_regs_read)) {
uint32_t base_regs[21];
ap->dp->ap_regs_read(ap, base_regs);
for(i = 0; i < sizeof(regnum_cortex_m) / 4; i++)
*regs++ = base_regs[regnum_cortex_m[i]];
if (t->target_options & TOPT_FLAVOUR_V7MF)
for(size_t t = 0; t < sizeof(regnum_cortex_mf) / 4; t++)
*regs++ = ap->dp->ap_reg_read(ap, regnum_cortex_mf[t]);
}
#else
if (0) {}
#endif
else {
/* FIXME: Describe what's really going on here */
adiv5_ap_write(ap, ADIV5_AP_CSW, ap->csw | ADIV5_AP_CSW_SIZE_WORD);
/* Map the banked data registers (0x10-0x1c) to the
* debug registers DHCSR, DCRSR, DCRDR and DEMCR respectively */
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE, ADIV5_AP_TAR,
CORTEXM_DHCSR);
/* Walk the regnum_cortex_m array, reading the registers it
* calls out. */
adiv5_ap_write(ap, ADIV5_AP_DB(DB_DCRSR), regnum_cortex_m[0]);
/* Required to switch banks */
*regs++ = adiv5_dp_read(ap->dp, ADIV5_AP_DB(DB_DCRDR));
for(i = 1; i < sizeof(regnum_cortex_m) / 4; i++) {
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE, ADIV5_AP_DB(DB_DCRSR),
regnum_cortex_m[i]);
*regs++ = adiv5_dp_read(ap->dp, ADIV5_AP_DB(DB_DCRDR));
}
if (t->target_options & TOPT_FLAVOUR_V7MF)
for(i = 0; i < sizeof(regnum_cortex_mf) / 4; i++) {
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE,
ADIV5_AP_DB(DB_DCRSR),
regnum_cortex_mf[i]);
*regs++ = adiv5_dp_read(ap->dp, ADIV5_AP_DB(DB_DCRDR));
}
}
}
static void cortexm_regs_write(target *t, const void *data)
{
const uint32_t *regs = data;
ADIv5_AP_t *ap = cortexm_ap(t);
#if PC_HOSTED == 1
if (ap->dp->ap_reg_write) {
for (size_t z = 0; z < sizeof(regnum_cortex_m) / 4; z++) {
ap->dp->ap_reg_write(ap, regnum_cortex_m[z], *regs);
regs++;
}
if (t->target_options & TOPT_FLAVOUR_V7MF)
for(size_t z = 0; z < sizeof(regnum_cortex_mf) / 4; z++) {
ap->dp->ap_reg_write(ap, regnum_cortex_mf[z], *regs);
regs++;
}
}
#else
if (0) {}
#endif
else {
unsigned i;
/* FIXME: Describe what's really going on here */
adiv5_ap_write(ap, ADIV5_AP_CSW, ap->csw | ADIV5_AP_CSW_SIZE_WORD);
/* Map the banked data registers (0x10-0x1c) to the
* debug registers DHCSR, DCRSR, DCRDR and DEMCR respectively */
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE, ADIV5_AP_TAR,
CORTEXM_DHCSR);
/* Walk the regnum_cortex_m array, writing the registers it
* calls out. */
adiv5_ap_write(ap, ADIV5_AP_DB(DB_DCRDR), *regs++);
/* Required to switch banks */
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE, ADIV5_AP_DB(DB_DCRSR),
0x10000 | regnum_cortex_m[0]);
for(i = 1; i < sizeof(regnum_cortex_m) / 4; i++) {
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE,
ADIV5_AP_DB(DB_DCRDR), *regs++);
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE, ADIV5_AP_DB(DB_DCRSR),
0x10000 | regnum_cortex_m[i]);
}
if (t->target_options & TOPT_FLAVOUR_V7MF)
for(i = 0; i < sizeof(regnum_cortex_mf) / 4; i++) {
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE,
ADIV5_AP_DB(DB_DCRDR), *regs++);
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE,
ADIV5_AP_DB(DB_DCRSR),
0x10000 | regnum_cortex_mf[i]);
}
}
}
int cortexm_mem_write_sized(
target *t, target_addr dest, const void *src, size_t len, enum align align)
{
cortexm_cache_clean(t, dest, len, true);
adiv5_mem_write_sized(cortexm_ap(t), dest, src, len, align);
return target_check_error(t);
}
static int dcrsr_regnum(target *t, unsigned reg)
{
if (reg < sizeof(regnum_cortex_m) / 4) {
return regnum_cortex_m[reg];
} else if ((t->target_options & TOPT_FLAVOUR_V7MF) &&
(reg < (sizeof(regnum_cortex_m) +
sizeof(regnum_cortex_mf) / 4))) {
return regnum_cortex_mf[reg - sizeof(regnum_cortex_m)/4];
} else {
return -1;
}
}
static ssize_t cortexm_reg_read(target *t, int reg, void *data, size_t max)
{
if (max < 4)
return -1;
uint32_t *r = data;
target_mem_write32(t, CORTEXM_DCRSR, dcrsr_regnum(t, reg));
*r = target_mem_read32(t, CORTEXM_DCRDR);
return 4;
}
static ssize_t cortexm_reg_write(target *t, int reg, const void *data, size_t max)
{
if (max < 4)
return -1;
const uint32_t *r = data;
target_mem_write32(t, CORTEXM_DCRDR, *r);
target_mem_write32(t, CORTEXM_DCRSR, CORTEXM_DCRSR_REGWnR |
dcrsr_regnum(t, reg));
return 4;
}
static uint32_t cortexm_pc_read(target *t)
{
target_mem_write32(t, CORTEXM_DCRSR, 0x0F);
return target_mem_read32(t, CORTEXM_DCRDR);
}
static void cortexm_pc_write(target *t, const uint32_t val)
{
target_mem_write32(t, CORTEXM_DCRDR, val);
target_mem_write32(t, CORTEXM_DCRSR, CORTEXM_DCRSR_REGWnR | 0x0F);
}
/* The following three routines implement target halt/resume
* using the core debug registers in the NVIC. */
static void cortexm_reset(target *t)
{
/* Read DHCSR here to clear S_RESET_ST bit before reset */
target_mem_read32(t, CORTEXM_DHCSR);
platform_timeout to;
if ((t->target_options & CORTEXM_TOPT_INHIBIT_SRST) == 0) {
platform_srst_set_val(true);
platform_srst_set_val(false);
/* Some NRF52840 users saw invalid SWD transaction with
* native/firmware without this delay.*/
platform_delay(10);
}
uint32_t dhcsr = target_mem_read32(t, CORTEXM_DHCSR);
if ((dhcsr & CORTEXM_DHCSR_S_RESET_ST) == 0) {
/* No reset seen yet, maybe as SRST is not connected, or device has
* CORTEXM_TOPT_INHIBIT_SRST set.
* Trigger reset by AIRCR.*/
target_mem_write32(t, CORTEXM_AIRCR,
CORTEXM_AIRCR_VECTKEY | CORTEXM_AIRCR_SYSRESETREQ);
}
/* If target needs to do something extra (see Atmel SAM4L for example) */
if (t->extended_reset != NULL) {
t->extended_reset(t);
}
/* Wait for CORTEXM_DHCSR_S_RESET_ST to read 0, meaning reset released.*/
platform_timeout_set(&to, 1000);
while ((target_mem_read32(t, CORTEXM_DHCSR) & CORTEXM_DHCSR_S_RESET_ST) &&
!platform_timeout_is_expired(&to));
#if defined(PLATFORM_HAS_DEBUG)
if (platform_timeout_is_expired(&to))
DEBUG_WARN("Reset seem to be stuck low!\n");
#endif
/* 10 ms delay to ensure that things such as the STM32 HSI clock
* have started up fully. */
platform_delay(10);
/* Reset DFSR flags */
target_mem_write32(t, CORTEXM_DFSR, CORTEXM_DFSR_RESETALL);
/* Make sure we ignore any initial DAP error */
target_check_error(t);
}
static void cortexm_halt_request(target *t)
{
volatile struct exception e;
TRY_CATCH (e, EXCEPTION_TIMEOUT) {
target_mem_write32(t, CORTEXM_DHCSR, CORTEXM_DHCSR_DBGKEY |
CORTEXM_DHCSR_C_HALT |
CORTEXM_DHCSR_C_DEBUGEN);
}
if (e.type) {
tc_printf(t, "Timeout sending interrupt, is target in WFI?\n");
}
}
static enum target_halt_reason cortexm_halt_poll(target *t, target_addr *watch)
{
struct cortexm_priv *priv = t->priv;
volatile uint32_t dhcsr = 0;
volatile struct exception e;
TRY_CATCH (e, EXCEPTION_ALL) {
/* If this times out because the target is in WFI then
* the target is still running. */
dhcsr = target_mem_read32(t, CORTEXM_DHCSR);
}
switch (e.type) {
case EXCEPTION_ERROR:
/* Oh crap, there's no recovery from this... */
target_list_free();
return TARGET_HALT_ERROR;
case EXCEPTION_TIMEOUT:
/* Timeout isn't a problem, target could be in WFI */
return TARGET_HALT_RUNNING;
}
if (!(dhcsr & CORTEXM_DHCSR_S_HALT))
return TARGET_HALT_RUNNING;
/* We've halted. Let's find out why. */
uint32_t dfsr = target_mem_read32(t, CORTEXM_DFSR);
target_mem_write32(t, CORTEXM_DFSR, dfsr); /* write back to reset */
if ((dfsr & CORTEXM_DFSR_VCATCH) && cortexm_fault_unwind(t))
return TARGET_HALT_FAULT;
/* Remember if we stopped on a breakpoint */
priv->on_bkpt = dfsr & (CORTEXM_DFSR_BKPT);
if (priv->on_bkpt) {
/* If we've hit a programmed breakpoint, check for semihosting
* call. */
uint32_t pc = cortexm_pc_read(t);
uint16_t bkpt_instr;
bkpt_instr = target_mem_read16(t, pc);
if (bkpt_instr == 0xBEAB) {
if (cortexm_hostio_request(t)) {
return TARGET_HALT_REQUEST;
} else {
target_halt_resume(t, priv->stepping);
return 0;
}
}
}
if (dfsr & CORTEXM_DFSR_DWTTRAP) {
if (watch != NULL)
*watch = cortexm_check_watch(t);
return TARGET_HALT_WATCHPOINT;
}
if (dfsr & CORTEXM_DFSR_BKPT)
return TARGET_HALT_BREAKPOINT;
if (dfsr & CORTEXM_DFSR_HALTED)
return priv->stepping ? TARGET_HALT_STEPPING : TARGET_HALT_REQUEST;
return TARGET_HALT_BREAKPOINT;
}
static void cortexm_halt_resume(target *t, bool step)
{
struct cortexm_priv *priv = t->priv;
uint32_t dhcsr = CORTEXM_DHCSR_DBGKEY | CORTEXM_DHCSR_C_DEBUGEN;
if (step)
dhcsr |= CORTEXM_DHCSR_C_STEP | CORTEXM_DHCSR_C_MASKINTS;
/* Disable interrupts while single stepping... */
if(step != priv->stepping) {
target_mem_write32(t, CORTEXM_DHCSR, dhcsr | CORTEXM_DHCSR_C_HALT);
priv->stepping = step;
}
if (priv->on_bkpt) {
uint32_t pc = cortexm_pc_read(t);
if ((target_mem_read16(t, pc) & 0xFF00) == 0xBE00)
cortexm_pc_write(t, pc + 2);
}
if (priv->has_cache)
target_mem_write32(t, CORTEXM_ICIALLU, 0);
target_mem_write32(t, CORTEXM_DHCSR, dhcsr);
}
static int cortexm_fault_unwind(target *t)
{
uint32_t hfsr = target_mem_read32(t, CORTEXM_HFSR);
uint32_t cfsr = target_mem_read32(t, CORTEXM_CFSR);
target_mem_write32(t, CORTEXM_HFSR, hfsr);/* write back to reset */
target_mem_write32(t, CORTEXM_CFSR, cfsr);/* write back to reset */
/* We check for FORCED in the HardFault Status Register or
* for a configurable fault to avoid catching core resets */
if((hfsr & CORTEXM_HFSR_FORCED) || cfsr) {
/* Unwind exception */
uint32_t regs[t->regs_size / 4];
uint32_t stack[8];
uint32_t retcode, framesize;
/* Read registers for post-exception stack pointer */
target_regs_read(t, regs);
/* save retcode currently in lr */
retcode = regs[REG_LR];
bool spsel = retcode & (1<<2);
bool fpca = !(retcode & (1<<4));
/* Read stack for pre-exception registers */
uint32_t sp = spsel ? regs[REG_PSP] : regs[REG_MSP];
target_mem_read(t, stack, sp, sizeof(stack));
if (target_check_error(t))
return 0;
regs[REG_LR] = stack[5]; /* restore LR to pre-exception state */
regs[REG_PC] = stack[6]; /* restore PC to pre-exception state */
/* adjust stack to pop exception state */
framesize = fpca ? 0x68 : 0x20; /* check for basic vs. extended frame */
if (stack[7] & (1<<9)) /* check for stack alignment fixup */
framesize += 4;
if (spsel) {
regs[REG_SPECIAL] |= 0x4000000;
regs[REG_SP] = regs[REG_PSP] += framesize;
} else {
regs[REG_SP] = regs[REG_MSP] += framesize;
}
if (fpca)
regs[REG_SPECIAL] |= 0x2000000;
/* FIXME: stack[7] contains xPSR when this is supported */
/* although, if we caught the exception it will be unchanged */
/* Reset exception state to allow resuming from restored
* state.
*/
target_mem_write32(t, CORTEXM_AIRCR,
CORTEXM_AIRCR_VECTKEY | CORTEXM_AIRCR_VECTCLRACTIVE);
/* Write pre-exception registers back to core */
target_regs_write(t, regs);
return 1;
}
return 0;
}
int cortexm_run_stub(target *t, uint32_t loadaddr,
uint32_t r0, uint32_t r1, uint32_t r2, uint32_t r3)
{
uint32_t regs[t->regs_size / 4];
memset(regs, 0, sizeof(regs));
regs[0] = r0;
regs[1] = r1;
regs[2] = r2;
regs[3] = r3;
regs[15] = loadaddr;
regs[16] = 0x1000000;
regs[19] = 0;
cortexm_regs_write(t, regs);
if (target_check_error(t))
return -1;
/* Execute the stub */
enum target_halt_reason reason;
cortexm_halt_resume(t, 0);
while ((reason = cortexm_halt_poll(t, NULL)) == TARGET_HALT_RUNNING)
;
if (reason == TARGET_HALT_ERROR)
raise_exception(EXCEPTION_ERROR, "Target lost in stub");
if (reason != TARGET_HALT_BREAKPOINT)
return -2;
uint32_t pc = cortexm_pc_read(t);
uint16_t bkpt_instr = target_mem_read16(t, pc);
if (bkpt_instr >> 8 != 0xbe)
return -2;
return bkpt_instr & 0xff;
}
/* The following routines implement hardware breakpoints and watchpoints.
* The Flash Patch and Breakpoint (FPB) and Data Watch and Trace (DWT)
* systems are used. */
static uint32_t dwt_mask(size_t len)
{
switch (len) {
case 1:
return CORTEXM_DWT_MASK_BYTE;
case 2:
return CORTEXM_DWT_MASK_HALFWORD;
case 4:
return CORTEXM_DWT_MASK_WORD;
default:
return -1;
}
}
static uint32_t dwt_func(target *t, enum target_breakwatch type)
{
uint32_t x = 0;
if ((t->target_options & TOPT_FLAVOUR_V6M) == 0)
x = CORTEXM_DWT_FUNC_DATAVSIZE_WORD;
switch (type) {
case TARGET_WATCH_WRITE:
return CORTEXM_DWT_FUNC_FUNC_WRITE | x;
case TARGET_WATCH_READ:
return CORTEXM_DWT_FUNC_FUNC_READ | x;
case TARGET_WATCH_ACCESS:
return CORTEXM_DWT_FUNC_FUNC_ACCESS | x;
default:
return -1;
}
}
static int cortexm_breakwatch_set(target *t, struct breakwatch *bw)
{
struct cortexm_priv *priv = t->priv;
unsigned i;
uint32_t val = bw->addr;
switch (bw->type) {
case TARGET_BREAK_HARD:
if (priv->flash_patch_revision == 0) {
val &= 0x1FFFFFFC;
val |= (bw->addr & 2)?0x80000000:0x40000000;
}
val |= 1;
for(i = 0; i < priv->hw_breakpoint_max; i++)
if (!priv->hw_breakpoint[i])
break;
if (i == priv->hw_breakpoint_max)
return -1;
priv->hw_breakpoint[i] = true;
target_mem_write32(t, CORTEXM_FPB_COMP(i), val);
bw->reserved[0] = i;
return 0;
case TARGET_WATCH_WRITE:
case TARGET_WATCH_READ:
case TARGET_WATCH_ACCESS:
for(i = 0; i < priv->hw_watchpoint_max; i++)
if (!priv->hw_watchpoint[i])
break;
if (i == priv->hw_watchpoint_max)
return -1;
priv->hw_watchpoint[i] = true;
target_mem_write32(t, CORTEXM_DWT_COMP(i), val);
target_mem_write32(t, CORTEXM_DWT_MASK(i), dwt_mask(bw->size));
target_mem_write32(t, CORTEXM_DWT_FUNC(i), dwt_func(t, bw->type));
bw->reserved[0] = i;
return 0;
default:
return 1;
}
}
static int cortexm_breakwatch_clear(target *t, struct breakwatch *bw)
{
struct cortexm_priv *priv = t->priv;
unsigned i = bw->reserved[0];
switch (bw->type) {
case TARGET_BREAK_HARD:
priv->hw_breakpoint[i] = false;
target_mem_write32(t, CORTEXM_FPB_COMP(i), 0);
return 0;
case TARGET_WATCH_WRITE:
case TARGET_WATCH_READ:
case TARGET_WATCH_ACCESS:
priv->hw_watchpoint[i] = false;
target_mem_write32(t, CORTEXM_DWT_FUNC(i), 0);
return 0;
default:
return 1;
}
}
static target_addr cortexm_check_watch(target *t)
{
struct cortexm_priv *priv = t->priv;
unsigned i;
for(i = 0; i < priv->hw_watchpoint_max; i++)
/* if SET and MATCHED then break */
if(priv->hw_watchpoint[i] &&
(target_mem_read32(t, CORTEXM_DWT_FUNC(i)) &
CORTEXM_DWT_FUNC_MATCHED))
break;
if (i == priv->hw_watchpoint_max)
return 0;
return target_mem_read32(t, CORTEXM_DWT_COMP(i));
}
static bool cortexm_vector_catch(target *t, int argc, char *argv[])
{
struct cortexm_priv *priv = t->priv;
const char *vectors[] = {"reset", NULL, NULL, NULL, "mm", "nocp",
"chk", "stat", "bus", "int", "hard"};
uint32_t tmp = 0;
unsigned i;
if (argc < 3) {
tc_printf(t, "usage: monitor vector_catch (enable|disable) "
"(hard|int|bus|stat|chk|nocp|mm|reset)\n");
} else {
for (int j = 0; j < argc; j++)
for (i = 0; i < sizeof(vectors) / sizeof(char*); i++) {
if (vectors[i] && !strcmp(vectors[i], argv[j]))
tmp |= 1 << i;
}
bool enable;
if (parse_enable_or_disable(argv[1], &enable)) {
if (enable) {
priv->demcr |= tmp;
} else {
priv->demcr &= ~tmp;
}
target_mem_write32(t, CORTEXM_DEMCR, priv->demcr);
}
}
tc_printf(t, "Catching vectors: ");
for (i = 0; i < sizeof(vectors) / sizeof(char*); i++) {
if (!vectors[i])
continue;
if (priv->demcr & (1 << i))
tc_printf(t, "%s ", vectors[i]);
}
tc_printf(t, "\n");
return true;
}
/* Windows defines this with some other meaning... */
#ifdef SYS_OPEN
# undef SYS_OPEN
#endif
/* Semihosting support */
/*
* If the target wants to read the special filename ":semihosting-features"
* to know what semihosting features are supported, it's easiest to create
* that file on the host in the directory where gdb runs,
* or, if using pc-hosted, where blackmagic_hosted runs.
*
* $ echo -e 'SHFB\x03' > ":semihosting-features"
* $ chmod 0444 ":semihosting-features"
*/
/* ARM Semihosting syscall numbers, from "Semihosting for AArch32 and AArch64 Version 3.0" */
#define SYS_CLOCK 0x10
#define SYS_CLOSE 0x02
#define SYS_ELAPSED 0x30
#define SYS_ERRNO 0x13
#define SYS_EXIT 0x18
#define SYS_EXIT_EXTENDED 0x20
#define SYS_FLEN 0x0C
#define SYS_GET_CMDLINE 0x15
#define SYS_HEAPINFO 0x16
#define SYS_ISERROR 0x08
#define SYS_ISTTY 0x09
#define SYS_OPEN 0x01
#define SYS_READ 0x06
#define SYS_READC 0x07
#define SYS_REMOVE 0x0E
#define SYS_RENAME 0x0F
#define SYS_SEEK 0x0A
#define SYS_SYSTEM 0x12
#define SYS_TICKFREQ 0x31
#define SYS_TIME 0x11
#define SYS_TMPNAM 0x0D
#define SYS_WRITE 0x05
#define SYS_WRITEC 0x03
#define SYS_WRITE0 0x04
#if PC_HOSTED == 0
/* probe memory access functions */
static void probe_mem_read(target *t __attribute__((unused)), void *probe_dest, target_addr target_src, size_t len)
{
uint8_t *dst = (uint8_t *)probe_dest;
uint8_t *src = (uint8_t *)target_src;
DEBUG_INFO("probe_mem_read\n");
while (len--) *dst++=*src++;
return;
}
static void probe_mem_write(target *t __attribute__((unused)), target_addr target_dest, const void *probe_src, size_t len)
{
uint8_t *dst = (uint8_t *)target_dest;
uint8_t *src = (uint8_t *)probe_src;
DEBUG_INFO("probe_mem_write\n");
while (len--) *dst++=*src++;
return;
}
#endif
static int cortexm_hostio_request(target *t)
{
uint32_t arm_regs[t->regs_size];
uint32_t params[4];
t->tc->interrupted = false;
target_regs_read(t, arm_regs);
target_mem_read(t, params, arm_regs[1], sizeof(params));
uint32_t syscall = arm_regs[0];
int32_t ret = 0;
DEBUG_INFO("syscall 0"PRIx32"%"PRIx32" (%"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32")\n",
syscall, params[0], params[1], params[2], params[3]);
switch (syscall) {
#if PC_HOSTED == 1
/* code that runs in pc-hosted process. use linux system calls. */
case SYS_OPEN:{ /* open */
target_addr fnam_taddr = params[0];
uint32_t fnam_len = params[2];
ret = -1;
if ((fnam_taddr == TARGET_NULL) || (fnam_len == 0)) break;
/* Translate stupid fopen modes to open flags.
* See DUI0471C, Table 8-3 */
const uint32_t flags[] = {
O_RDONLY, /* r, rb */
O_RDWR, /* r+, r+b */
O_WRONLY | O_CREAT | O_TRUNC,/*w*/
O_RDWR | O_CREAT | O_TRUNC,/*w+*/
O_WRONLY | O_CREAT | O_APPEND,/*a*/
O_RDWR | O_CREAT | O_APPEND,/*a+*/
};
uint32_t pflag = flags[params[1] >> 1];
char filename[4];
target_mem_read(t, filename, fnam_taddr, sizeof(filename));
/* handle requests for console i/o */
if (!strcmp(filename, ":tt")) {
if (pflag == TARGET_O_RDONLY)
ret = STDIN_FILENO;
else if (pflag & TARGET_O_TRUNC)
ret = STDOUT_FILENO;
else
ret = STDERR_FILENO;
ret++;
break;
}
char *fnam = malloc(fnam_len + 1);
if (fnam == NULL) break;
target_mem_read(t, fnam, fnam_taddr, fnam_len + 1);
if (target_check_error(t)) {free(fnam); break;}
fnam[fnam_len]='\0';
ret = open(fnam, pflag, 0644);
free(fnam);
if (ret != -1)
ret++;
break;
}
case SYS_CLOSE: /* close */
ret = close(params[0] - 1);
break;
case SYS_READ: { /* read */
ret = -1;
target_addr buf_taddr = params[1];
uint32_t buf_len = params[2];
if (buf_taddr == TARGET_NULL) break;
if (buf_len == 0) {ret = 0; break;}
uint8_t *buf = malloc(buf_len);
if (buf == NULL) break;
ssize_t rc = read(params[0] - 1, buf, buf_len);
if (rc >= 0)
rc = buf_len - rc;
target_mem_write(t, buf_taddr, buf, buf_len);
free(buf);
if (target_check_error(t)) break;
ret = rc;
break;
}
case SYS_WRITE: { /* write */
ret = -1;
target_addr buf_taddr = params[1];
uint32_t buf_len = params[2];
if (buf_taddr == TARGET_NULL) break;
if (buf_len == 0) {ret = 0; break;}
uint8_t *buf = malloc(buf_len);
if (buf == NULL) break;
target_mem_read(t, buf, buf_taddr, buf_len);
if (target_check_error(t)) {free(buf); break;}
ret = write(params[0] - 1, buf, buf_len);
free(buf);
if (ret >= 0)
ret = buf_len - ret;
break;
}
case SYS_WRITEC: { /* writec */
ret = -1;
uint8_t ch;
target_addr ch_taddr = arm_regs[1];
if (ch_taddr == TARGET_NULL) break;
ch = target_mem_read8(t, ch_taddr);
if (target_check_error(t)) break;
fputc(ch, stderr);
ret = 0;
break;
}
case SYS_WRITE0:{ /* write0 */
ret = -1;
uint8_t ch;
target_addr str = arm_regs[1];
if (str == TARGET_NULL) break;
while ((ch = target_mem_read8(t, str++)) != '\0') {
if (target_check_error(t)) break;
fputc(ch, stderr);
}
ret = 0;
break;
}
case SYS_ISTTY: /* isatty */
ret = isatty(params[0] - 1);
break;
case SYS_SEEK:{ /* lseek */
off_t pos = params[1];
if (lseek(params[0] - 1, pos, SEEK_SET) == (off_t)pos) ret = 0;
else ret = -1;
break;
}
case SYS_RENAME: { /* rename */
ret = -1;
target_addr fnam1_taddr = params[0];
uint32_t fnam1_len = params[1];
if (fnam1_taddr == TARGET_NULL) break;
if (fnam1_len == 0) break;
target_addr fnam2_taddr = params[2];
uint32_t fnam2_len = params[3];
if (fnam2_taddr == TARGET_NULL) break;
if (fnam2_len == 0) break;
char *fnam1 = malloc(fnam1_len + 1);
if (fnam1 == NULL) break;
target_mem_read(t, fnam1, fnam1_taddr, fnam1_len + 1);
if (target_check_error(t)) {free(fnam1); break;}
fnam1[fnam1_len]='\0';
char *fnam2 = malloc(fnam2_len + 1);
if (fnam2 == NULL) {free(fnam1); break;}
target_mem_read(t, fnam2, fnam2_taddr, fnam2_len + 1);
if (target_check_error(t)) {free(fnam1); free(fnam2); break;}
fnam2[fnam2_len]='\0';
ret = rename(fnam1, fnam2);
free(fnam1);
free(fnam2);
break;
}
case SYS_REMOVE: { /* unlink */
ret = -1;
target_addr fnam_taddr = params[0];
if (fnam_taddr == TARGET_NULL) break;
uint32_t fnam_len = params[1];
if (fnam_len == 0) break;
char *fnam = malloc(fnam_len + 1);
if (fnam == NULL) break;
target_mem_read(t, fnam, fnam_taddr, fnam_len + 1);
if (target_check_error(t)) {free(fnam); break;}
fnam[fnam_len]='\0';
ret = remove(fnam);
free(fnam);
break;
}
case SYS_SYSTEM: { /* system */
ret = -1;
target_addr cmd_taddr = params[0];
if (cmd_taddr == TARGET_NULL) break;
uint32_t cmd_len = params[1];
if (cmd_len == 0) break;
char *cmd = malloc(cmd_len + 1);
if (cmd == NULL) break;
target_mem_read(t, cmd, cmd_taddr, cmd_len + 1);
if (target_check_error(t)) {free(cmd); break;}
cmd[cmd_len]='\0';
ret = system(cmd);
free(cmd);
break;
}
case SYS_FLEN: { /* file length */
ret = -1;
struct stat stat_buf;
if (fstat(params[0]-1, &stat_buf) != 0) break;
if (stat_buf.st_size > INT32_MAX) break;
ret = stat_buf.st_size;
break;
}
case SYS_CLOCK: { /* clock */
/* can't use clock() because that would give cpu time of pc-hosted process */
ret = -1;
struct timeval timeval_buf;
if(gettimeofday(&timeval_buf, NULL) != 0) break;
uint32_t sec = timeval_buf.tv_sec;
uint64_t usec = timeval_buf.tv_usec;
if (time0_sec > sec) time0_sec = sec;
sec -= time0_sec;
uint64_t csec64 = (sec * 1000000ull + usec)/10000ull;
uint32_t csec = csec64 & 0x7fffffff;
ret = csec;
break;
}
case SYS_TIME: /* time */
ret = time(NULL);
break;
case SYS_READC: /* readc */
ret = getchar();
break;
case SYS_ERRNO: /* errno */
ret = errno;
break;
#else
/* code that runs in probe. use gdb fileio calls. */
case SYS_OPEN:{ /* open */
/* Translate stupid fopen modes to open flags.
* See DUI0471C, Table 8-3 */
const uint32_t flags[] = {
TARGET_O_RDONLY, /* r, rb */
TARGET_O_RDWR, /* r+, r+b */
TARGET_O_WRONLY | TARGET_O_CREAT | TARGET_O_TRUNC,/*w*/
TARGET_O_RDWR | TARGET_O_CREAT | TARGET_O_TRUNC,/*w+*/
TARGET_O_WRONLY | TARGET_O_CREAT | TARGET_O_APPEND,/*a*/
TARGET_O_RDWR | TARGET_O_CREAT | TARGET_O_APPEND,/*a+*/
};
uint32_t pflag = flags[params[1] >> 1];
char filename[4];
target_mem_read(t, filename, params[0], sizeof(filename));
/* handle requests for console i/o */
if (!strcmp(filename, ":tt")) {
if (pflag == TARGET_O_RDONLY)
ret = STDIN_FILENO;
else if (pflag & TARGET_O_TRUNC)
ret = STDOUT_FILENO;
else
ret = STDERR_FILENO;
ret++;
break;
}
ret = tc_open(t, params[0], params[2] + 1, pflag, 0644);
if (ret != -1)
ret++;
break;
}
case SYS_CLOSE: /* close */
ret = tc_close(t, params[0] - 1);
break;
case SYS_READ: /* read */
ret = tc_read(t, params[0] - 1, params[1], params[2]);
if (ret >= 0)
ret = params[2] - ret;
break;
case SYS_WRITE: /* write */
ret = tc_write(t, params[0] - 1, params[1], params[2]);
if (ret >= 0)
ret = params[2] - ret;
break;
case SYS_WRITEC: /* writec */
ret = tc_write(t, STDERR_FILENO, arm_regs[1], 1);
break;
case SYS_WRITE0:{ /* write0 */
ret = -1;
target_addr str_begin = arm_regs[1];
target_addr str_end = str_begin;
while (target_mem_read8(t, str_end) != 0) {
if (target_check_error(t)) break;
str_end++;
}
int len = str_end - str_begin;
if (len != 0) {
int rc = tc_write(t, STDERR_FILENO, str_begin, len);
if (rc != len) break;
}
ret = 0;
break;
}
case SYS_ISTTY: /* isatty */
ret = tc_isatty(t, params[0] - 1);
break;
case SYS_SEEK: /* lseek */
if (tc_lseek(t, params[0] - 1, params[1], TARGET_SEEK_SET) == (long)params[1]) ret = 0;
else ret = -1;
break;
case SYS_RENAME:/* rename */
ret = tc_rename(t, params[0], params[1] + 1,
params[2], params[3] + 1);
break;
case SYS_REMOVE:/* unlink */
ret = tc_unlink(t, params[0], params[1] + 1);
break;
case SYS_SYSTEM:/* system */
/* before use first enable system calls with the following gdb command: 'set remote system-call-allowed 1' */
ret = tc_system(t, params[0], params[1] + 1);
break;
case SYS_FLEN:
{ /* file length */
ret = -1;
uint32_t fio_stat[16]; /* same size as fio_stat in gdb/include/gdb/fileio.h */
//DEBUG("SYS_FLEN fio_stat addr %p\n", fio_stat);
void (*saved_mem_read)(target *t, void *dest, target_addr src, size_t len);
void (*saved_mem_write)(target *t, target_addr dest, const void *src, size_t len);
saved_mem_read = t->mem_read;
saved_mem_write = t->mem_write;
t->mem_read = probe_mem_read;
t->mem_write = probe_mem_write;
int rc = tc_fstat(t, params[0] - 1, (target_addr)fio_stat); /* write fstat() result in fio_stat[] */
t->mem_read = saved_mem_read;
t->mem_write = saved_mem_write;
if (rc) break; /* tc_fstat() failed */
uint32_t fst_size_msw = fio_stat[7]; /* most significant 32 bits of fst_size in fio_stat */
uint32_t fst_size_lsw = fio_stat[8]; /* least significant 32 bits of fst_size in fio_stat */
if (fst_size_msw != 0) break; /* file size too large for int32_t return type */
ret = __builtin_bswap32(fst_size_lsw); /* convert from bigendian to target order */
if (ret < 0) ret = -1; /* file size too large for int32_t return type */
break;
}
case SYS_CLOCK: /* clock */
case SYS_TIME: { /* time */
/* use same code for SYS_CLOCK and SYS_TIME, more compact */
ret = -1;
struct __attribute__((packed, aligned(4))) {
uint32_t ftv_sec;
uint64_t ftv_usec;
} fio_timeval;
//DEBUG("SYS_TIME fio_timeval addr %p\n", &fio_timeval);
void (*saved_mem_read)(target *t, void *dest, target_addr src, size_t len);
void (*saved_mem_write)(target *t, target_addr dest, const void *src, size_t len);
saved_mem_read = t->mem_read;
saved_mem_write = t->mem_write;
t->mem_read = probe_mem_read;
t->mem_write = probe_mem_write;
int rc = tc_gettimeofday(t, (target_addr) &fio_timeval, (target_addr) NULL); /* write gettimeofday() result in fio_timeval[] */
t->mem_read = saved_mem_read;
t->mem_write = saved_mem_write;
if (rc) break; /* tc_gettimeofday() failed */
uint32_t sec = __builtin_bswap32(fio_timeval.ftv_sec); /* convert from bigendian to target order */
uint64_t usec = __builtin_bswap64(fio_timeval.ftv_usec);
if (syscall == SYS_TIME) { /* SYS_TIME: time in seconds */
ret = sec;
} else { /* SYS_CLOCK: time in hundredths of seconds */
if (time0_sec > sec) time0_sec = sec; /* set sys_clock time origin */
sec -= time0_sec;
uint64_t csec64 = (sec * 1000000ull + usec)/10000ull;
uint32_t csec = csec64 & 0x7fffffff;
ret = csec;
}
break;
}
case SYS_READC: { /* readc */
uint8_t ch='?';
//DEBUG("SYS_READC ch addr %p\n", &ch);
void (*saved_mem_read)(target *t, void *dest, target_addr src, size_t len);
void (*saved_mem_write)(target *t, target_addr dest, const void *src, size_t len);
saved_mem_read = t->mem_read;
saved_mem_write = t->mem_write;
t->mem_read = probe_mem_read;
t->mem_write = probe_mem_write;
int rc = tc_read(t, STDIN_FILENO, (target_addr) &ch, 1); /* read a character in ch */
t->mem_read = saved_mem_read;
t->mem_write = saved_mem_write;
if (rc == 1) ret = ch;
else ret = -1;
break;
}
case SYS_ERRNO: /* Return last errno from GDB */
ret = t->tc->errno_;
break;
#endif
case SYS_EXIT: /* _exit() */
tc_printf(t, "_exit(0x%x)\n", params[0]);
target_halt_resume(t, 1);
break;
case SYS_EXIT_EXTENDED: /* _exit() */
tc_printf(t, "_exit(0x%x%08x)\n", params[1], params[0]); /* exit() with 64bit exit value */
target_halt_resume(t, 1);
break;
case SYS_GET_CMDLINE: { /* get_cmdline */
uint32_t retval[2];
ret = -1;
target_addr buf_ptr = params[0];
target_addr buf_len = params[1];
if (strlen(t->cmdline)+1 > buf_len) break;
if(target_mem_write(t, buf_ptr, t->cmdline, strlen(t->cmdline)+1)) break;
retval[0] = buf_ptr;
retval[1] = strlen(t->cmdline)+1;
if(target_mem_write(t, arm_regs[1], retval, sizeof(retval))) break;
ret = 0;
break;
}
case SYS_ISERROR: { /* iserror */
int errorNo = params[0];
ret = (errorNo == TARGET_EPERM) ||
(errorNo == TARGET_ENOENT) ||
(errorNo == TARGET_EINTR) ||
(errorNo == TARGET_EIO) ||
(errorNo == TARGET_EBADF) ||
(errorNo == TARGET_EACCES) ||
(errorNo == TARGET_EFAULT) ||
(errorNo == TARGET_EBUSY) ||
(errorNo == TARGET_EEXIST) ||
(errorNo == TARGET_ENODEV) ||
(errorNo == TARGET_ENOTDIR) ||
(errorNo == TARGET_EISDIR) ||
(errorNo == TARGET_EINVAL) ||
(errorNo == TARGET_ENFILE) ||
(errorNo == TARGET_EMFILE) ||
(errorNo == TARGET_EFBIG) ||
(errorNo == TARGET_ENOSPC) ||
(errorNo == TARGET_ESPIPE) ||
(errorNo == TARGET_EROFS) ||
(errorNo == TARGET_ENOSYS) ||
(errorNo == TARGET_ENAMETOOLONG) ||
(errorNo == TARGET_EUNKNOWN);
break;
}
case SYS_HEAPINFO: /* heapinfo */
target_mem_write(t, arm_regs[1], &t->heapinfo, sizeof(t->heapinfo)); /* See newlib/libc/sys/arm/crt0.S */
break;
case SYS_TMPNAM: { /* tmpnam */
/* Given a target identifier between 0 and 255, returns a temporary name */
target_addr buf_ptr = params[0];
int target_id = params[1];
int buf_size = params[2];
char fnam[]="tempXX.tmp";
ret = -1;
if (buf_ptr == 0) break;
if (buf_size <= 0) break;
if ((target_id < 0) || (target_id > 255)) break; /* target id out of range */
fnam[5]='A'+(target_id&0xF); /* create filename */
fnam[4]='A'+(target_id>>4&0xF);
if (strlen(fnam)+1>(uint32_t)buf_size) break; /* target buffer too small */
if(target_mem_write(t, buf_ptr, fnam, strlen(fnam)+1)) break; /* copy filename to target */
ret = 0;
break;
}
// not implemented yet:
case SYS_ELAPSED: /* elapsed */
case SYS_TICKFREQ: /* tickfreq */
ret = -1;
break;
}
arm_regs[0] = ret;
target_regs_write(t, arm_regs);
return t->tc->interrupted;
}