440 lines
12 KiB
C
440 lines
12 KiB
C
/*
|
|
* This file is part of the libopencm3 project.
|
|
*
|
|
* Copyright (C) 2009 Uwe Hermann <uwe@hermann-uwe.de>
|
|
* Copyright (C) 2013 Stephen Dwyer <scdwyer@ualberta.ca>
|
|
*
|
|
* This library is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this library. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <libopencm3/stm32/rcc.h>
|
|
#include <libopencm3/stm32/gpio.h>
|
|
#include <libopencm3/stm32/usart.h>
|
|
#include <libopencm3/stm32/dma.h>
|
|
#include <libopencm3/cm3/nvic.h>
|
|
#include <libopencm3/stm32/spi.h>
|
|
#include <stdio.h>
|
|
#include <errno.h>
|
|
|
|
#ifndef USE_16BIT_TRANSFERS
|
|
#define USE_16BIT_TRANSFERS 1
|
|
#endif
|
|
|
|
/* This is for the counter state flag */
|
|
typedef enum {
|
|
TX_UP_RX_HOLD = 0,
|
|
TX_HOLD_RX_UP,
|
|
TX_DOWN_RX_DOWN
|
|
} cnt_state;
|
|
|
|
/* This is a global spi state flag */
|
|
typedef enum {
|
|
NONE = 0,
|
|
ONE,
|
|
DONE
|
|
} trans_status;
|
|
|
|
volatile trans_status transceive_status;
|
|
|
|
int _write(int file, char *ptr, int len);
|
|
|
|
static void clock_setup(void)
|
|
{
|
|
rcc_clock_setup_in_hse_12mhz_out_72mhz();
|
|
|
|
/* Enable GPIOA, GPIOB, GPIOC clock. */
|
|
rcc_peripheral_enable_clock(&RCC_APB2ENR,
|
|
RCC_APB2ENR_IOPAEN | RCC_APB2ENR_IOPBEN |
|
|
RCC_APB2ENR_IOPCEN);
|
|
|
|
/* Enable clocks for GPIO port A (for GPIO_USART2_TX) and USART2. */
|
|
rcc_peripheral_enable_clock(&RCC_APB2ENR, RCC_APB2ENR_IOPAEN |
|
|
RCC_APB2ENR_AFIOEN);
|
|
rcc_peripheral_enable_clock(&RCC_APB1ENR, RCC_APB1ENR_USART2EN);
|
|
|
|
/* Enable SPI1 Periph and gpio clocks */
|
|
rcc_peripheral_enable_clock(&RCC_APB2ENR,
|
|
RCC_APB2ENR_SPI1EN);
|
|
|
|
/* Enable DMA1 clock */
|
|
rcc_peripheral_enable_clock(&RCC_AHBENR, RCC_AHBENR_DMA1EN);
|
|
}
|
|
|
|
static void spi_setup(void) {
|
|
|
|
/* Configure GPIOs: SS=PA4, SCK=PA5, MISO=PA6 and MOSI=PA7
|
|
* For now ignore the SS pin so we can use it to time the ISRs
|
|
*/
|
|
gpio_set_mode(GPIOA, GPIO_MODE_OUTPUT_50_MHZ,
|
|
GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, /* GPIO4 | */
|
|
GPIO5 |
|
|
GPIO7 );
|
|
|
|
gpio_set_mode(GPIOA, GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT,
|
|
GPIO6);
|
|
|
|
/* Reset SPI, SPI_CR1 register cleared, SPI is disabled */
|
|
spi_reset(SPI1);
|
|
|
|
/* Explicitly disable I2S in favour of SPI operation */
|
|
SPI1_I2SCFGR = 0;
|
|
|
|
/* Set up SPI in Master mode with:
|
|
* Clock baud rate: 1/64 of peripheral clock frequency
|
|
* Clock polarity: Idle High
|
|
* Clock phase: Data valid on 2nd clock pulse
|
|
* Data frame format: 8-bit or 16-bit
|
|
* Frame format: MSB First
|
|
*/
|
|
#if USE_16BIT_TRANSFERS
|
|
spi_init_master(SPI1, SPI_CR1_BAUDRATE_FPCLK_DIV_64, SPI_CR1_CPOL_CLK_TO_1_WHEN_IDLE,
|
|
SPI_CR1_CPHA_CLK_TRANSITION_2, SPI_CR1_DFF_16BIT, SPI_CR1_MSBFIRST);
|
|
#else
|
|
spi_init_master(SPI1, SPI_CR1_BAUDRATE_FPCLK_DIV_64, SPI_CR1_CPOL_CLK_TO_1_WHEN_IDLE,
|
|
SPI_CR1_CPHA_CLK_TRANSITION_2, SPI_CR1_DFF_8BIT, SPI_CR1_MSBFIRST);
|
|
#endif
|
|
|
|
/*
|
|
* Set NSS management to software.
|
|
*
|
|
* Note:
|
|
* Setting nss high is very important, even if we are controlling the GPIO
|
|
* ourselves this bit needs to be at least set to 1, otherwise the spi
|
|
* peripheral will not send any data out.
|
|
*/
|
|
spi_enable_software_slave_management(SPI1);
|
|
spi_set_nss_high(SPI1);
|
|
|
|
/* Enable SPI1 periph. */
|
|
spi_enable(SPI1);
|
|
}
|
|
|
|
static void dma_int_enable(void) {
|
|
/* SPI1 RX on DMA1 Channel 2 */
|
|
nvic_set_priority(NVIC_DMA1_CHANNEL2_IRQ, 0);
|
|
nvic_enable_irq(NVIC_DMA1_CHANNEL2_IRQ);
|
|
/* SPI1 TX on DMA1 Channel 3 */
|
|
nvic_set_priority(NVIC_DMA1_CHANNEL3_IRQ, 0);
|
|
nvic_enable_irq(NVIC_DMA1_CHANNEL3_IRQ);
|
|
}
|
|
|
|
/* Not used in this example
|
|
static void dma_int_disable(void) {
|
|
nvic_disable_irq(NVIC_DMA1_CHANNEL2_IRQ);
|
|
nvic_disable_irq(NVIC_DMA1_CHANNEL3_IRQ);
|
|
}
|
|
*/
|
|
|
|
static void dma_setup(void)
|
|
{
|
|
dma_int_enable();
|
|
}
|
|
|
|
#if USE_16BIT_TRANSFERS
|
|
static int spi_dma_transceive(u16 *tx_buf, int tx_len, u16 *rx_buf, int rx_len)
|
|
#else
|
|
static int spi_dma_transceive(u8 *tx_buf, int tx_len, u8 *rx_buf, int rx_len)
|
|
#endif
|
|
{
|
|
/* Check for 0 length in both tx and rx */
|
|
if ((rx_len < 1) && (tx_len < 1)) {
|
|
/* return -1 as error */
|
|
return -1;
|
|
}
|
|
|
|
/* Reset DMA channels*/
|
|
dma_channel_reset(DMA1, DMA_CHANNEL2);
|
|
dma_channel_reset(DMA1, DMA_CHANNEL3);
|
|
|
|
/* Reset SPI data and status registers.
|
|
* Here we assume that the SPI peripheral is NOT
|
|
* busy any longer, i.e. the last activity was verified
|
|
* complete elsewhere in the program.
|
|
*/
|
|
volatile u8 temp_data __attribute__ ((unused));
|
|
while (SPI_SR(SPI1) & (SPI_SR_RXNE | SPI_SR_OVR)) {
|
|
temp_data = SPI_DR(SPI1);
|
|
}
|
|
|
|
/* Reset status flag appropriately (both 0 case caught above) */
|
|
transceive_status = NONE;
|
|
if (rx_len < 1) {
|
|
transceive_status = ONE;
|
|
}
|
|
if (tx_len < 1) {
|
|
transceive_status = ONE;
|
|
}
|
|
|
|
/* Set up rx dma, note it has higher priority to avoid overrun */
|
|
if (rx_len > 0) {
|
|
dma_set_peripheral_address(DMA1, DMA_CHANNEL2, (u32)&SPI1_DR);
|
|
dma_set_memory_address(DMA1, DMA_CHANNEL2, (u32)rx_buf);
|
|
dma_set_number_of_data(DMA1, DMA_CHANNEL2, rx_len);
|
|
dma_set_read_from_peripheral(DMA1, DMA_CHANNEL2);
|
|
dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL2);
|
|
#if USE_16BIT_TRANSFERS
|
|
dma_set_peripheral_size(DMA1, DMA_CHANNEL2, DMA_CCR_PSIZE_16BIT);
|
|
dma_set_memory_size(DMA1, DMA_CHANNEL2, DMA_CCR_MSIZE_16BIT);
|
|
#else
|
|
dma_set_peripheral_size(DMA1, DMA_CHANNEL2, DMA_CCR_PSIZE_8BIT);
|
|
dma_set_memory_size(DMA1, DMA_CHANNEL2, DMA_CCR_MSIZE_8BIT);
|
|
#endif
|
|
dma_set_priority(DMA1, DMA_CHANNEL2, DMA_CCR_PL_VERY_HIGH);
|
|
}
|
|
|
|
/* Set up tx dma */
|
|
if (tx_len > 0) {
|
|
dma_set_peripheral_address(DMA1, DMA_CHANNEL3, (u32)&SPI1_DR);
|
|
dma_set_memory_address(DMA1, DMA_CHANNEL3, (u32)tx_buf);
|
|
dma_set_number_of_data(DMA1, DMA_CHANNEL3, tx_len);
|
|
dma_set_read_from_memory(DMA1, DMA_CHANNEL3);
|
|
dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL3);
|
|
#if USE_16BIT_TRANSFERS
|
|
dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_16BIT);
|
|
dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_16BIT);
|
|
#else
|
|
dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_8BIT);
|
|
dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_8BIT);
|
|
#endif
|
|
dma_set_priority(DMA1, DMA_CHANNEL3, DMA_CCR_PL_HIGH);
|
|
}
|
|
|
|
/* Enable dma transfer complete interrupts */
|
|
if (rx_len > 0) {
|
|
dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL2);
|
|
}
|
|
if (tx_len > 0) {
|
|
dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL3);
|
|
}
|
|
|
|
/* Activate dma channels */
|
|
if (rx_len > 0) {
|
|
dma_enable_channel(DMA1, DMA_CHANNEL2);
|
|
}
|
|
if (tx_len > 0) {
|
|
dma_enable_channel(DMA1, DMA_CHANNEL3);
|
|
}
|
|
|
|
/* Enable the spi transfer via dma
|
|
* This will immediately start the transmission,
|
|
* after which when the receive is complete, the
|
|
* receive dma will activate
|
|
*/
|
|
if (rx_len > 0) {
|
|
spi_enable_rx_dma(SPI1);
|
|
}
|
|
if (tx_len > 0) {
|
|
spi_enable_tx_dma(SPI1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* SPI receive completed with DMA */
|
|
void dma1_channel2_isr(void)
|
|
{
|
|
gpio_set(GPIOA,GPIO4);
|
|
if ((DMA1_ISR &DMA_ISR_TCIF2) != 0) {
|
|
DMA1_IFCR |= DMA_IFCR_CTCIF2;
|
|
}
|
|
|
|
dma_disable_transfer_complete_interrupt(DMA1, DMA_CHANNEL2);
|
|
|
|
spi_disable_rx_dma(SPI1);
|
|
|
|
dma_disable_channel(DMA1, DMA_CHANNEL2);
|
|
|
|
/* Increment the status to indicate one of the transfers is complete */
|
|
transceive_status++;
|
|
gpio_clear(GPIOA,GPIO4);
|
|
}
|
|
|
|
/* SPI transmit completed with DMA */
|
|
void dma1_channel3_isr(void)
|
|
{
|
|
gpio_set(GPIOB,GPIO1);
|
|
if ((DMA1_ISR &DMA_ISR_TCIF3) != 0) {
|
|
DMA1_IFCR |= DMA_IFCR_CTCIF3;
|
|
}
|
|
|
|
dma_disable_transfer_complete_interrupt(DMA1, DMA_CHANNEL3);
|
|
|
|
spi_disable_tx_dma(SPI1);
|
|
|
|
dma_disable_channel(DMA1, DMA_CHANNEL3);
|
|
|
|
/* Increment the status to indicate one of the transfers is complete */
|
|
transceive_status++;
|
|
gpio_clear(GPIOB,GPIO1);
|
|
}
|
|
|
|
static void usart_setup(void)
|
|
{
|
|
/* Setup GPIO pin GPIO_USART2_TX and GPIO_USART2_RX. */
|
|
gpio_set_mode(GPIOA, GPIO_MODE_OUTPUT_50_MHZ,
|
|
GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, GPIO_USART2_TX);
|
|
gpio_set_mode(GPIOA, GPIO_MODE_INPUT,
|
|
GPIO_CNF_INPUT_FLOAT, GPIO_USART2_RX);
|
|
|
|
/* Setup UART parameters. */
|
|
usart_set_baudrate(USART2, 9600);
|
|
usart_set_databits(USART2, 8);
|
|
usart_set_stopbits(USART2, USART_STOPBITS_1);
|
|
usart_set_mode(USART2, USART_MODE_TX_RX);
|
|
usart_set_parity(USART2, USART_PARITY_NONE);
|
|
usart_set_flow_control(USART2, USART_FLOWCONTROL_NONE);
|
|
|
|
/* Finally enable the USART. */
|
|
usart_enable(USART2);
|
|
}
|
|
|
|
int _write(int file, char *ptr, int len)
|
|
{
|
|
int i;
|
|
|
|
if (file == 1) {
|
|
for (i = 0; i < len; i++)
|
|
usart_send_blocking(USART2, ptr[i]);
|
|
return i;
|
|
}
|
|
|
|
errno = EIO;
|
|
return -1;
|
|
}
|
|
|
|
static void gpio_setup(void)
|
|
{
|
|
/* Set GPIO8 (in GPIO port A) to 'output push-pull'. */
|
|
gpio_set_mode(GPIOA, GPIO_MODE_OUTPUT_2_MHZ,
|
|
GPIO_CNF_OUTPUT_PUSHPULL, GPIO8);
|
|
|
|
/* Use the extra pins to signal when the ISRs are running */
|
|
/* First, SPI1 - SS pin on Lisa/M v2.0 */
|
|
gpio_set_mode(GPIOA, GPIO_MODE_OUTPUT_2_MHZ,
|
|
GPIO_CNF_OUTPUT_PUSHPULL, GPIO4);
|
|
/* Then, SPI1 - DRDY pin on Lisa/M v2.0 */
|
|
gpio_set_mode(GPIOB, GPIO_MODE_OUTPUT_2_MHZ,
|
|
GPIO_CNF_OUTPUT_PUSHPULL, GPIO1);
|
|
|
|
}
|
|
|
|
int main(void)
|
|
{
|
|
int counter_tx = 0;
|
|
int counter_rx = 0;
|
|
|
|
cnt_state counter_state = TX_UP_RX_HOLD;
|
|
|
|
int i = 0;
|
|
|
|
/* Transmit and Receive packets, set transmit to index and receive to known unused value to aid in debugging */
|
|
#if USE_16BIT_TRANSFERS
|
|
u16 tx_packet[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
|
|
u16 rx_packet[16] = {0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42};
|
|
#else
|
|
u8 tx_packet[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
|
|
u8 rx_packet[16] = {0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42};
|
|
#endif
|
|
|
|
transceive_status = DONE;
|
|
|
|
clock_setup();
|
|
gpio_setup();
|
|
usart_setup();
|
|
spi_setup();
|
|
dma_setup();
|
|
|
|
#if USE_16BIT_TRANSFERS
|
|
printf("SPI with DMA Transfer Test using 16bit option (Use loopback)\r\n\r\n");
|
|
#else
|
|
printf("SPI with DMA Transfer Test using 8bit option (Use loopback)\r\n\r\n");
|
|
#endif
|
|
|
|
/* Blink the LED (PA8) on the board with every transmitted byte. */
|
|
while (1) {
|
|
/* LED on/off */
|
|
gpio_toggle(GPIOA, GPIO8);
|
|
|
|
/* Print what is going to be sent on the SPI bus */
|
|
printf("Sending packet (tx len %02i):", counter_tx);
|
|
for (i = 0; i < counter_tx; i++)
|
|
{
|
|
printf(" 0x%02x,", tx_packet[i]);
|
|
}
|
|
printf("\r\n");
|
|
|
|
/* Start a transceive */
|
|
if (spi_dma_transceive(tx_packet, counter_tx, rx_packet, counter_rx)) {
|
|
printf("Attempted 0 length tx and rx packets\r\n");
|
|
}
|
|
|
|
/* Wait until transceive complete.
|
|
* This checks the state flag as well as follows the
|
|
* procedure on the Reference Manual (RM0008 rev 14
|
|
* Section 25.3.9 page 692, the note.)
|
|
*/
|
|
while (transceive_status != DONE)
|
|
;
|
|
while (!(SPI_SR(SPI1) & SPI_SR_TXE))
|
|
;
|
|
while (SPI_SR(SPI1) & SPI_SR_BSY)
|
|
;
|
|
|
|
/* Print what was received on the SPI bus */
|
|
printf("Received Packet (rx len %02i):", counter_rx);
|
|
for (i = 0; i < 16; i++) {
|
|
printf(" 0x%02x,", rx_packet[i]);
|
|
}
|
|
printf("\r\n\r\n");
|
|
|
|
/* Update counters
|
|
* If we use the loopback method, we can not
|
|
* have a rx length longer than the tx length.
|
|
* Testing rx lengths longer than tx lengths
|
|
* requires an actual slave device that will
|
|
* return data.
|
|
*/
|
|
switch (counter_state) {
|
|
case TX_UP_RX_HOLD:
|
|
counter_tx++;
|
|
if (counter_tx > 15) {
|
|
counter_state = TX_HOLD_RX_UP;
|
|
}
|
|
break;
|
|
case TX_HOLD_RX_UP:
|
|
counter_rx++;
|
|
if (counter_rx > 15) {
|
|
counter_state = TX_DOWN_RX_DOWN;
|
|
}
|
|
break;
|
|
case TX_DOWN_RX_DOWN:
|
|
counter_tx--;
|
|
counter_rx--;
|
|
if (counter_tx < 1) {
|
|
counter_state = TX_UP_RX_HOLD;
|
|
}
|
|
break;
|
|
default:
|
|
;
|
|
}
|
|
|
|
/* Reset receive buffer for consistency */
|
|
for (i = 0; i < 16; i++) {
|
|
rx_packet[i] = 0x42;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|