blackmagic/src/target/kinetis.c
Uwe Bonnes f87dff8d83 kinetis: Remove static variables, add word union to target_s.
Add a word union to target structure to hold a single word variable.
2021-04-25 16:03:23 +02:00

586 lines
18 KiB
C

/*
* This file is part of the Black Magic Debug project.
*
* Copyright (C) 2015 Black Sphere Technologies Ltd.
* Written by Gareth McMullin <gareth@blacksphere.co.nz>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* This file implements KL25 target specific functions providing
* the XML memory map and Flash memory programming.
*
* According to Freescale doc KL25P80M48SF0RM:
* KL25 Sub-family Reference Manual
*
* Extended with support for KL02 family
*
* Extended with support for K64 family with info from K22P64M50SF4RM:
* K22 Sub-Family Reference Manual
*
* Extended with support for K64 family with info from K64P144M120SF5RM:
* K64 Sub-Family Reference Manual, Rev. 2,
*/
#include "command.h"
#include "general.h"
#include "target.h"
#include "target_internal.h"
#define SIM_SDID 0x40048024
#define SIM_FCFG1 0x4004804C
#define FTFA_BASE 0x40020000
#define FTFA_FSTAT (FTFA_BASE + 0x00)
#define FTFA_FCNFG (FTFA_BASE + 0x01)
#define FTFA_FSEC (FTFA_BASE + 0x02)
#define FTFA_FOPT (FTFA_BASE + 0x03)
#define FTFA_FCCOB_0 (FTFA_BASE + 0x04)
#define FTFA_FCCOB_1 (FTFA_BASE + 0x08)
#define FTFA_FCCOB_2 (FTFA_BASE + 0x0C)
#define FTFA_FSTAT_CCIF (1 << 7)
#define FTFA_FSTAT_RDCOLERR (1 << 6)
#define FTFA_FSTAT_ACCERR (1 << 5)
#define FTFA_FSTAT_FPVIOL (1 << 4)
#define FTFA_FSTAT_MGSTAT0 (1 << 0)
#define FTFA_CMD_CHECK_ERASE 0x01
#define FTFA_CMD_PROGRAM_CHECK 0x02
#define FTFA_CMD_READ_RESOURCE 0x03
#define FTFA_CMD_PROGRAM_LONGWORD 0x06
/* Part of the FTFE module for K64 */
#define FTFE_CMD_PROGRAM_PHRASE 0x07
#define FTFA_CMD_ERASE_SECTOR 0x09
#define FTFA_CMD_CHECK_ERASE_ALL 0x40
#define FTFA_CMD_READ_ONCE 0x41
#define FTFA_CMD_PROGRAM_ONCE 0x43
#define FTFA_CMD_ERASE_ALL 0x44
#define FTFA_CMD_BACKDOOR_ACCESS 0x45
#define KL_WRITE_LEN 4
/* 8 byte phrases need to be written to the k64 flash */
#define K64_WRITE_LEN 8
static bool kinetis_cmd_unsafe(target *t, int argc, char *argv[]);
const struct command_s kinetis_cmd_list[] = {
{"unsafe", (cmd_handler)kinetis_cmd_unsafe, "Allow programming security byte (enable|disable)"},
{NULL, NULL, NULL}
};
static bool kinetis_cmd_unsafe(target *t, int argc, char *argv[])
{
if (argc == 1) {
tc_printf(t, "Allow programming security byte: %s\n",
t->unsafe_enabled ? "enabled" : "disabled");
} else {
parse_enable_or_disable(argv[1], &t->unsafe_enabled);
}
return true;
}
static int kl_gen_flash_erase(struct target_flash *f, target_addr addr, size_t len);
static int kl_gen_flash_write(struct target_flash *f,
target_addr dest, const void *src, size_t len);
static int kl_gen_flash_done(struct target_flash *f);
struct kinetis_flash {
struct target_flash f;
uint8_t write_len;
};
static void kl_gen_add_flash(target *t, uint32_t addr, size_t length,
size_t erasesize, size_t write_len)
{
struct kinetis_flash *kf = calloc(1, sizeof(*kf));
struct target_flash *f;
if (!kf) { /* calloc failed: heap exhaustion */
DEBUG_WARN("calloc: failed in %s\n", __func__);
return;
}
f = &kf->f;
f->start = addr;
f->length = length;
f->blocksize = erasesize;
f->erase = kl_gen_flash_erase;
f->write = kl_gen_flash_write;
f->done = kl_gen_flash_done;
f->erased = 0xff;
kf->write_len = write_len;
target_add_flash(t, f);
}
bool kinetis_probe(target *t)
{
uint32_t sdid = target_mem_read32(t, SIM_SDID);
uint32_t fcfg1 = target_mem_read32(t, SIM_FCFG1);
switch (sdid >> 20) {
case 0x161:
/* sram memory size */
switch((sdid >> 16) & 0x0f) {
case 0x03:/* 4 KB */
target_add_ram(t, 0x1ffffc00, 0x0400);
target_add_ram(t, 0x20000000, 0x0C00);
break;
case 0x04:/* 8 KB */
target_add_ram(t, 0x1ffff800, 0x0800);
target_add_ram(t, 0x20000000, 0x1800);
break;
case 0x05:/* 16 KB */
target_add_ram(t, 0x1ffff000, 0x1000);
target_add_ram(t, 0x20000000, 0x3000);
break;
case 0x06:/* 32 KB */
target_add_ram(t, 0x1fffe000, 0x2000);
target_add_ram(t, 0x20000000, 0x6000);
break;
default:
return false;
break;
}
/* flash memory size */
switch((fcfg1 >> 24) & 0x0f) {
case 0x03: /* 32 KB */
t->driver = "KL16Z32Vxxx";
kl_gen_add_flash(t, 0x00000000, 0x08000, 0x400, KL_WRITE_LEN);
break;
case 0x05: /* 64 KB */
t->driver = "KL16Z64Vxxx";
kl_gen_add_flash(t, 0x00000000, 0x10000, 0x400, KL_WRITE_LEN);
break;
case 0x07: /* 128 KB */
t->driver = "KL16Z128Vxxx";
kl_gen_add_flash(t, 0x00000000, 0x20000, 0x400, KL_WRITE_LEN);
break;
case 0x09: /* 256 KB */
t->driver = "KL16Z256Vxxx";
kl_gen_add_flash(t, 0x00000000, 0x40000, 0x400, KL_WRITE_LEN);
break;
default:
return false;
break;
}
break;
case 0x251:
t->driver = "KL25";
target_add_ram(t, 0x1ffff000, 0x1000);
target_add_ram(t, 0x20000000, 0x3000);
kl_gen_add_flash(t, 0x00000000, 0x20000, 0x400, KL_WRITE_LEN);
break;
case 0x231:
t->driver = "KL27x128"; // MKL27 >=128kb
target_add_ram(t, 0x1fffe000, 0x2000);
target_add_ram(t, 0x20000000, 0x6000);
kl_gen_add_flash(t, 0x00000000, 0x40000, 0x400, KL_WRITE_LEN);
break;
case 0x271:
switch((sdid >> 16) & 0x0f) {
case 4:
t->driver = "KL27x32";
target_add_ram(t, 0x1ffff800, 0x0800);
target_add_ram(t, 0x20000000, 0x1800);
kl_gen_add_flash(t, 0x00000000, 0x8000, 0x400, KL_WRITE_LEN);
break;
case 5:
t->driver = "KL27x64";
target_add_ram(t, 0x1ffff000, 0x1000);
target_add_ram(t, 0x20000000, 0x3000);
kl_gen_add_flash(t, 0x00000000, 0x10000, 0x400, KL_WRITE_LEN);
break;
default:
return false;
}
break;
case 0x021: /* KL02 family */
switch((sdid >> 16) & 0x0f) {
case 3:
t->driver = "KL02x32";
target_add_ram(t, 0x1FFFFC00, 0x400);
target_add_ram(t, 0x20000000, 0xc00);
kl_gen_add_flash(t, 0x00000000, 0x7FFF, 0x400, KL_WRITE_LEN);
break;
case 2:
t->driver = "KL02x16";
target_add_ram(t, 0x1FFFFE00, 0x200);
target_add_ram(t, 0x20000000, 0x600);
kl_gen_add_flash(t, 0x00000000, 0x3FFF, 0x400, KL_WRITE_LEN);
break;
case 1:
t->driver = "KL02x8";
target_add_ram(t, 0x1FFFFF00, 0x100);
target_add_ram(t, 0x20000000, 0x300);
kl_gen_add_flash(t, 0x00000000, 0x1FFF, 0x400, KL_WRITE_LEN);
break;
default:
return false;
}
break;
case 0x031: /* KL03 family */
t->driver = "KL03";
target_add_ram(t, 0x1ffffe00, 0x200);
target_add_ram(t, 0x20000000, 0x600);
kl_gen_add_flash(t, 0, 0x8000, 0x400, KL_WRITE_LEN);
break;
case 0x220: /* K22F family */
t->driver = "K22F";
target_add_ram(t, 0x1c000000, 0x4000000);
target_add_ram(t, 0x20000000, 0x100000);
kl_gen_add_flash(t, 0, 0x40000, 0x800, KL_WRITE_LEN);
kl_gen_add_flash(t, 0x40000, 0x40000, 0x800, KL_WRITE_LEN);
break;
case 0x620: /* K64F family. */
/* This should be 0x640, but according to the errata sheet
* (KINETIS_1N83J) K64 and K24's will show up with the
* subfamily nibble as 2
*/
t->driver = "K64";
target_add_ram(t, 0x1FFF0000, 0x10000);
target_add_ram(t, 0x20000000, 0x30000);
kl_gen_add_flash(t, 0, 0x80000, 0x1000, K64_WRITE_LEN);
kl_gen_add_flash(t, 0x80000, 0x80000, 0x1000, K64_WRITE_LEN);
break;
case 0x000: /* Older K-series */
switch(sdid & 0xff0) {
case 0x000: /* K10 Family, DIEID=0x0 */
case 0x080: /* K10 Family, DIEID=0x1 */
case 0x100: /* K10 Family, DIEID=0x2 */
case 0x180: /* K10 Family, DIEID=0x3 */
case 0x220: /* K11 Family, DIEID=0x4 */
return false;
case 0x200: /* K12 Family, DIEID=0x4 */
switch((fcfg1 >> 24) & 0x0f) {
/* K12 Sub-Family Reference Manual, K12P80M50SF4RM, Rev. 4, February 2013 */
case 0x7:
t->driver = "MK12DX128Vxx5";
target_add_ram(t, 0x1fffc000, 0x00004000); /* SRAM_L, 16 KB */
target_add_ram(t, 0x20000000, 0x00004000); /* SRAM_H, 16 KB */
kl_gen_add_flash(t, 0x00000000, 0x00020000, 0x800, KL_WRITE_LEN); /* P-Flash, 128 KB, 2 KB Sectors */
kl_gen_add_flash(t, 0x10000000, 0x00010000, 0x800, KL_WRITE_LEN); /* FlexNVM, 64 KB, 2 KB Sectors */
break;
case 0x9:
t->driver = "MK12DX256Vxx5";
target_add_ram(t, 0x1fffc000, 0x00004000); /* SRAM_L, 16 KB */
target_add_ram(t, 0x20000000, 0x00004000); /* SRAM_H, 16 KB */
kl_gen_add_flash(t, 0x00000000, 0x00040000, 0x800, KL_WRITE_LEN); /* P-Flash, 256 KB, 2 KB Sectors */
kl_gen_add_flash(t, 0x10000000, 0x00010000, 0x800, KL_WRITE_LEN); /* FlexNVM, 64 KB, 2 KB Sectors */
break;
case 0xb:
t->driver = "MK12DN512Vxx5";
target_add_ram(t, 0x1fff8000, 0x00008000); /* SRAM_L, 32 KB */
target_add_ram(t, 0x20000000, 0x00008000); /* SRAM_H, 32 KB */
kl_gen_add_flash(t, 0x00000000, 0x00040000, 0x800, KL_WRITE_LEN); /* P-Flash, 256 KB, 2 KB Sectors */
kl_gen_add_flash(t, 0x00040000, 0x00040000, 0x800, KL_WRITE_LEN); /* FlexNVM, 256 KB, 2 KB Sectors */
break;
default:
return false;
}
break;
case 0x010: /* K20 Family, DIEID=0x0 */
case 0x090: /* K20 Family, DIEID=0x1 */
case 0x110: /* K20 Family, DIEID=0x2 */
case 0x190: /* K20 Family, DIEID=0x3 */
case 0x230: /* K21 Family, DIEID=0x4 */
case 0x330: /* K21 Family, DIEID=0x6 */
case 0x210: /* K22 Family, DIEID=0x4 */
case 0x310: /* K22 Family, DIEID=0x6 */
case 0x0a0: /* K30 Family, DIEID=0x1 */
case 0x120: /* K30 Family, DIEID=0x2 */
case 0x0b0: /* K40 Family, DIEID=0x1 */
case 0x130: /* K40 Family, DIEID=0x2 */
case 0x0e0: /* K50 Family, DIEID=0x1 */
case 0x0f0: /* K51 Family, DIEID=0x1 */
case 0x170: /* K53 Family, DIEID=0x2 */
case 0x140: /* K60 Family, DIEID=0x2 */
case 0x1c0: /* K60 Family, DIEID=0x3 */
case 0x1d0: /* K70 Family, DIEID=0x3 */
default:
return false;
}
break;
case 0x118: /* S32K118 */
t->driver = "S32K118";
target_add_ram(t, 0x1ffffc00, 0x00000400); /* SRAM_L, 1 KB */
target_add_ram(t, 0x20000000, 0x00005800); /* SRAM_H, 22 KB */
kl_gen_add_flash(t, 0x00000000, 0x00040000, 0x800, K64_WRITE_LEN); /* P-Flash, 256 KB, 2 KB Sectors */
kl_gen_add_flash(t, 0x10000000, 0x00008000, 0x800, K64_WRITE_LEN); /* FlexNVM, 32 KB, 2 KB Sectors */
break;
case 0x148: /* S32K148 */
t->driver = "S32K148";
target_add_ram(t, 0x1FFE0000, 0x20000); /* SRAM_L, 128 KB */
target_add_ram(t, 0x20000000, 0x1f000); /* SRAM_H, 124 KB */
kl_gen_add_flash(t, 0x00000000, 0x00180000, 0x1000, K64_WRITE_LEN); /* P-Flash, 1536 KB, 4 KB Sectors */
kl_gen_add_flash(t, 0x10000000, 0x80000, 0x1000, K64_WRITE_LEN); /* FlexNVM, 512 KB, 4 KB Sectors */
break;
default:
return false;
}
t->unsafe_enabled = false;
target_add_commands(t, kinetis_cmd_list, t->driver);
return true;
}
static bool
kl_gen_command(target *t, uint8_t cmd, uint32_t addr, const uint8_t data[8])
{
uint8_t fstat;
/* clear errors unconditionally, so we can start a new operation */
target_mem_write8(t,FTFA_FSTAT,(FTFA_FSTAT_ACCERR | FTFA_FSTAT_FPVIOL));
/* Wait for CCIF to be high */
do {
fstat = target_mem_read8(t, FTFA_FSTAT);
} while (!(fstat & FTFA_FSTAT_CCIF));
/* Write command to FCCOB */
addr &= 0xffffff;
addr |= (uint32_t)cmd << 24;
target_mem_write32(t, FTFA_FCCOB_0, addr);
if (data) {
target_mem_write32(t, FTFA_FCCOB_1, *(uint32_t*)&data[0]);
target_mem_write32(t, FTFA_FCCOB_2, *(uint32_t*)&data[4]);
}
/* Enable execution by clearing CCIF */
target_mem_write8(t, FTFA_FSTAT, FTFA_FSTAT_CCIF);
/* Wait for execution to complete */
do {
fstat = target_mem_read8(t, FTFA_FSTAT);
/* Check ACCERR and FPVIOL are zero in FSTAT */
if (fstat & (FTFA_FSTAT_ACCERR | FTFA_FSTAT_FPVIOL))
return false;
} while (!(fstat & FTFA_FSTAT_CCIF));
return true;
}
static int kl_gen_flash_erase(struct target_flash *f, target_addr addr, size_t len)
{
while (len) {
if (kl_gen_command(f->t, FTFA_CMD_ERASE_SECTOR, addr, NULL)) {
/* Different targets have different flash erase sizes */
if (len > f->blocksize)
len -= f->blocksize;
else
len = 0;
addr += f->blocksize;
} else {
return 1;
}
}
return 0;
}
#define FLASH_SECURITY_BYTE_ADDRESS 0x40C
#define FLASH_SECURITY_BYTE_UNSECURED 0xFE
static int kl_gen_flash_write(struct target_flash *f,
target_addr dest, const void *src, size_t len)
{
struct kinetis_flash *kf = (struct kinetis_flash *)f;
/* Ensure we don't write something horrible over the security byte */
if (!f->t->unsafe_enabled &&
(dest <= FLASH_SECURITY_BYTE_ADDRESS) &&
((dest + len) > FLASH_SECURITY_BYTE_ADDRESS)) {
((uint8_t*)src)[FLASH_SECURITY_BYTE_ADDRESS - dest] =
FLASH_SECURITY_BYTE_UNSECURED;
}
/* Determine write command based on the alignment. */
uint8_t write_cmd;
if (kf->write_len == K64_WRITE_LEN) {
write_cmd = FTFE_CMD_PROGRAM_PHRASE;
} else {
write_cmd = FTFA_CMD_PROGRAM_LONGWORD;
}
while (len) {
if (kl_gen_command(f->t, write_cmd, dest, src)) {
if (len > kf->write_len)
len -= kf->write_len;
else
len = 0;
dest += kf->write_len;
src += kf->write_len;
} else {
return 1;
}
}
return 0;
}
static int kl_gen_flash_done(struct target_flash *f)
{
struct kinetis_flash *kf = (struct kinetis_flash *)f;
if (f->t->unsafe_enabled)
return 0;
if (target_mem_read8(f->t, FLASH_SECURITY_BYTE_ADDRESS) ==
FLASH_SECURITY_BYTE_UNSECURED)
return 0;
/* Load the security byte based on the alignment (determine 8 byte phrases
* vs 4 byte phrases).
*/
if (kf->write_len == 8) {
uint32_t vals[2];
vals[0] = target_mem_read32(f->t, FLASH_SECURITY_BYTE_ADDRESS-4);
vals[1] = target_mem_read32(f->t, FLASH_SECURITY_BYTE_ADDRESS);
vals[1] = (vals[1] & 0xffffff00) | FLASH_SECURITY_BYTE_UNSECURED;
kl_gen_command(f->t, FTFE_CMD_PROGRAM_PHRASE,
FLASH_SECURITY_BYTE_ADDRESS - 4, (uint8_t*)vals);
} else {
uint32_t val = target_mem_read32(f->t, FLASH_SECURITY_BYTE_ADDRESS);
val = (val & 0xffffff00) | FLASH_SECURITY_BYTE_UNSECURED;
kl_gen_command(f->t, FTFA_CMD_PROGRAM_LONGWORD,
FLASH_SECURITY_BYTE_ADDRESS, (uint8_t*)&val);
}
return 0;
}
/*** Kinetis recovery mode using the MDM-AP ***/
/* Kinetis security bits are stored in regular flash, so it is possible
* to enable protection by accident when flashing a bad binary.
* a backdoor AP is provided which may allow a mass erase to recover the
* device. This provides a fake target to allow a monitor command interface
*/
#include "adiv5.h"
#define KINETIS_MDM_IDR_K22F 0x1c0000
#define KINETIS_MDM_IDR_KZ03 0x1c0020
static bool kinetis_mdm_cmd_erase_mass(target *t, int argc, const char **argv);
static bool kinetis_mdm_cmd_ke04_mode(target *t, int argc, const char **argv);
const struct command_s kinetis_mdm_cmd_list[] = {
{"erase_mass", (cmd_handler)kinetis_mdm_cmd_erase_mass, "Erase entire flash memory"},
{"ke04_mode", (cmd_handler)kinetis_mdm_cmd_ke04_mode, "Allow erase for KE04"},
{NULL, NULL, NULL}
};
enum target_halt_reason mdm_halt_poll(target *t, target_addr *watch)
{
(void)t; (void)watch;
return TARGET_HALT_REQUEST;
}
void kinetis_mdm_probe(ADIv5_AP_t *ap)
{
switch(ap->idr) {
case KINETIS_MDM_IDR_KZ03: /* Also valid for KE04, no way to check! */
case KINETIS_MDM_IDR_K22F:
break;
default:
return;
}
target *t = target_new();
if (!t) {
return;
}
adiv5_ap_ref(ap);
t->priv = ap;
t->priv_free = (void*)adiv5_ap_unref;
t->driver = "Kinetis Recovery (MDM-AP)";
t->regs_size = 4;
target_add_commands(t, kinetis_mdm_cmd_list, t->driver);
}
#define MDM_STATUS ADIV5_AP_REG(0x00)
#define MDM_CONTROL ADIV5_AP_REG(0x04)
#define MDM_STATUS_MASS_ERASE_ACK (1 << 0)
#define MDM_STATUS_FLASH_READY (1 << 1)
#define MDM_STATUS_MASS_ERASE_ENABLED (1 << 5)
#define MDM_CONTROL_MASS_ERASE (1 << 0)
#define MDM_CONTROL_SYS_RESET (1 << 3)
/* This is needed as a separate command, as there's no way to *
* tell a KE04 from other kinetis in kinetis_mdm_probe() */
static bool kinetis_mdm_cmd_ke04_mode(target *t, int argc, const char **argv)
{
(void)argc;
(void)argv;
/* Set a flag to ignore part of the status and assert reset */
t->ke04_mode = true;
tc_printf(t, "Mass erase for KE04 now allowed\n");
return true;
}
static bool kinetis_mdm_cmd_erase_mass(target *t, int argc, const char **argv)
{
(void)argc;
(void)argv;
ADIv5_AP_t *ap = t->priv;
/* Keep the MCU in reset as stated in KL25PxxM48SF0RM */
if(t->ke04_mode)
adiv5_ap_write(ap, MDM_CONTROL, MDM_CONTROL_SYS_RESET);
uint32_t status, control;
status = adiv5_ap_read(ap, MDM_STATUS);
control = adiv5_ap_read(ap, MDM_CONTROL);
tc_printf(t, "Requesting mass erase (status = 0x%"PRIx32")\n", status);
/* This flag does not exist on KE04 */
if (!(status & MDM_STATUS_MASS_ERASE_ENABLED) && !t->ke04_mode) {
tc_printf(t, "ERROR: Mass erase disabled!\n");
return false;
}
/* Flag is not persistent */
t->ke04_mode = false;
if (!(status & MDM_STATUS_FLASH_READY)) {
tc_printf(t, "ERROR: Flash not ready!\n");
return false;
}
if (status & MDM_STATUS_MASS_ERASE_ACK) {
tc_printf(t, "ERROR: Mass erase already in progress!\n");
return false;
}
adiv5_ap_write(ap, MDM_CONTROL, MDM_CONTROL_MASS_ERASE);
do {
status = adiv5_ap_read(ap, MDM_STATUS);
} while (!(status & MDM_STATUS_MASS_ERASE_ACK));
tc_printf(t, "Mass erase acknowledged\n");
do {
control = adiv5_ap_read(ap, MDM_CONTROL);
} while (!(control & MDM_CONTROL_MASS_ERASE));
tc_printf(t, "Mass erase complete\n");
return true;
}