Uwe Bonnes b887a8d355 stm32: Portability changes
Allow to compile on STM32F0 platform too.
2021-07-15 15:06:54 +02:00

539 lines
15 KiB
C

/*
* This file is part of the Black Magic Debug project.
*
* Copyright (C) 2012 Black Sphere Technologies Ltd.
* Written by Gareth McMullin <gareth@blacksphere.co.nz>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <libopencm3/stm32/rcc.h>
#include <libopencm3/stm32/gpio.h>
#include <libopencm3/stm32/usart.h>
#include <libopencm3/stm32/dma.h>
#include <libopencm3/cm3/cortex.h>
#include <libopencm3/cm3/nvic.h>
#include <libopencm3/cm3/scs.h>
#include <libopencm3/usb/usbd.h>
#include <libopencm3/usb/cdc.h>
#include "general.h"
#include "cdcacm.h"
#ifdef DMA_STREAM0
#define dma_channel_reset(dma, channel) dma_stream_reset(dma, channel)
#define dma_enable_channel(dma, channel) dma_enable_stream(dma, channel)
#define dma_disable_channel(dma, channel) dma_disable_stream(dma, channel)
#define DMA_PSIZE_8BIT DMA_SxCR_PSIZE_8BIT
#define DMA_MSIZE_8BIT DMA_SxCR_MSIZE_8BIT
#define DMA_PL_HIGH DMA_SxCR_PL_HIGH
#define DMA_CGIF DMA_ISR_FLAGS
#else
#define DMA_PSIZE_8BIT DMA_CCR_PSIZE_8BIT
#define DMA_MSIZE_8BIT DMA_CCR_MSIZE_8BIT
#define DMA_PL_HIGH DMA_CCR_PL_HIGH
#define DMA_CGIF DMA_IFCR_CGIF_BIT
#endif
#define TX_LED_ACT (1 << 0)
#define RX_LED_ACT (1 << 1)
/* F072 with st_usbfs_v2_usb_drive drops characters at the 64 byte boundary!*/
#if !defined(USART_DMA_BUF_SIZE)
# define USART_DMA_BUF_SIZE 128
#endif
#define RX_FIFO_SIZE (USART_DMA_BUF_SIZE)
#define TX_BUF_SIZE (USART_DMA_BUF_SIZE)
/* TX double buffer */
static uint8_t buf_tx[TX_BUF_SIZE * 2];
/* Active buffer part idx */
static uint8_t buf_tx_act_idx;
/* Active buffer part used capacity */
static uint8_t buf_tx_act_sz;
/* TX transfer complete */
static bool tx_trfr_cplt = true;
/* RX Fifo buffer with space for copy fn overrun */
static uint8_t buf_rx[RX_FIFO_SIZE + sizeof(uint64_t)];
/* RX Fifo out pointer, writes assumed to be atomic */
static uint8_t buf_rx_out;
/* RX usb transfer complete */
static bool rx_usb_trfr_cplt = true;
#ifdef USBUART_DEBUG
/* Debug Fifo buffer with space for copy fn overrun */
static uint8_t usb_dbg_buf[RX_FIFO_SIZE + sizeof(uint64_t)];
/* Debug Fifo in pointer */
static uint8_t usb_dbg_in;
/* Debug Fifo out pointer */
static uint8_t usb_dbg_out;
#endif
static void usbuart_run(void);
/*
* Update led state atomically respecting RX anb TX states.
*/
static void usbuart_set_led_state(uint8_t ledn, bool state)
{
CM_ATOMIC_CONTEXT();
static uint8_t led_state = 0;
if (state)
{
led_state |= ledn;
gpio_set(LED_PORT_UART, LED_UART);
}
else
{
led_state &= ~ledn;
if (!led_state)
gpio_clear(LED_PORT_UART, LED_UART);
}
}
void usbuart_init(void)
{
/* Enable clocks */
rcc_periph_clock_enable(USBUSART_CLK);
rcc_periph_clock_enable(USBUSART_DMA_CLK);
/* Setup UART parameters */
UART_PIN_SETUP();
usart_set_baudrate(USBUSART, 38400);
usart_set_databits(USBUSART, 8);
usart_set_stopbits(USBUSART, USART_STOPBITS_1);
usart_set_mode(USBUSART, USART_MODE_TX_RX);
usart_set_parity(USBUSART, USART_PARITY_NONE);
usart_set_flow_control(USBUSART, USART_FLOWCONTROL_NONE);
USBUSART_CR1 |= USART_CR1_IDLEIE;
/* Setup USART TX DMA */
#if !defined(USBUSART_TDR) && defined(USBUSART_DR)
# define USBUSART_TDR USBUSART_DR
#endif
#if !defined(USBUSART_RDR) && defined(USBUSART_DR)
# define USBUSART_RDR USBUSART_DR
#endif
dma_channel_reset(USBUSART_DMA_BUS, USBUSART_DMA_TX_CHAN);
dma_set_peripheral_address(USBUSART_DMA_BUS, USBUSART_DMA_TX_CHAN, (uint32_t)&USBUSART_TDR);
dma_enable_memory_increment_mode(USBUSART_DMA_BUS, USBUSART_DMA_TX_CHAN);
dma_set_peripheral_size(USBUSART_DMA_BUS, USBUSART_DMA_TX_CHAN, DMA_PSIZE_8BIT);
dma_set_memory_size(USBUSART_DMA_BUS, USBUSART_DMA_TX_CHAN, DMA_MSIZE_8BIT);
dma_set_priority(USBUSART_DMA_BUS, USBUSART_DMA_TX_CHAN, DMA_PL_HIGH);
dma_enable_transfer_complete_interrupt(USBUSART_DMA_BUS, USBUSART_DMA_TX_CHAN);
#ifdef DMA_STREAM0
dma_set_transfer_mode(USBUSART_DMA_BUS, USBUSART_DMA_TX_CHAN, DMA_SxCR_DIR_MEM_TO_PERIPHERAL);
dma_channel_select(USBUSART_DMA_BUS, USBUSART_DMA_TX_CHAN, USBUSART_DMA_TRG);
dma_set_dma_flow_control(USBUSART_DMA_BUS, USBUSART_DMA_TX_CHAN);
dma_enable_direct_mode(USBUSART_DMA_BUS, USBUSART_DMA_TX_CHAN);
#else
dma_set_read_from_memory(USBUSART_DMA_BUS, USBUSART_DMA_TX_CHAN);
#endif
/* Setup USART RX DMA */
dma_channel_reset(USBUSART_DMA_BUS, USBUSART_DMA_RX_CHAN);
dma_set_peripheral_address(USBUSART_DMA_BUS, USBUSART_DMA_RX_CHAN, (uint32_t)&USBUSART_RDR);
dma_set_memory_address(USBUSART_DMA_BUS, USBUSART_DMA_RX_CHAN, (uint32_t)buf_rx);
dma_set_number_of_data(USBUSART_DMA_BUS, USBUSART_DMA_RX_CHAN, RX_FIFO_SIZE);
dma_enable_memory_increment_mode(USBUSART_DMA_BUS, USBUSART_DMA_RX_CHAN);
dma_enable_circular_mode(USBUSART_DMA_BUS, USBUSART_DMA_RX_CHAN);
dma_set_peripheral_size(USBUSART_DMA_BUS, USBUSART_DMA_RX_CHAN, DMA_PSIZE_8BIT);
dma_set_memory_size(USBUSART_DMA_BUS, USBUSART_DMA_RX_CHAN, DMA_MSIZE_8BIT);
dma_set_priority(USBUSART_DMA_BUS, USBUSART_DMA_RX_CHAN, DMA_PL_HIGH);
dma_enable_half_transfer_interrupt(USBUSART_DMA_BUS, USBUSART_DMA_RX_CHAN);
dma_enable_transfer_complete_interrupt(USBUSART_DMA_BUS, USBUSART_DMA_RX_CHAN);
#ifdef DMA_STREAM0
dma_set_transfer_mode(USBUSART_DMA_BUS, USBUSART_DMA_RX_CHAN, DMA_SxCR_DIR_PERIPHERAL_TO_MEM);
dma_channel_select(USBUSART_DMA_BUS, USBUSART_DMA_RX_CHAN, USBUSART_DMA_TRG);
dma_set_dma_flow_control(USBUSART_DMA_BUS, USBUSART_DMA_RX_CHAN);
dma_enable_direct_mode(USBUSART_DMA_BUS, USBUSART_DMA_RX_CHAN);
#else
dma_set_read_from_peripheral(USBUSART_DMA_BUS, USBUSART_DMA_RX_CHAN);
#endif
dma_enable_channel(USBUSART_DMA_BUS, USBUSART_DMA_RX_CHAN);
/* Enable interrupts */
nvic_set_priority(USBUSART_IRQ, IRQ_PRI_USBUSART);
#if defined(USBUSART_DMA_RXTX_IRQ)
nvic_set_priority(USBUSART_DMA_RXTX_IRQ, IRQ_PRI_USBUSART_DMA);
#else
nvic_set_priority(USBUSART_DMA_TX_IRQ, IRQ_PRI_USBUSART_DMA);
nvic_set_priority(USBUSART_DMA_RX_IRQ, IRQ_PRI_USBUSART_DMA);
#endif
nvic_enable_irq(USBUSART_IRQ);
#if defined(USBUSART_DMA_RXTX_IRQ)
nvic_enable_irq(USBUSART_DMA_RXTX_IRQ);
#else
nvic_enable_irq(USBUSART_DMA_TX_IRQ);
nvic_enable_irq(USBUSART_DMA_RX_IRQ);
#endif
/* Finally enable the USART */
usart_enable(USBUSART);
usart_enable_tx_dma(USBUSART);
usart_enable_rx_dma(USBUSART);
}
void usbuart_set_line_coding(struct usb_cdc_line_coding *coding)
{
usart_set_baudrate(USBUSART, coding->dwDTERate);
if (coding->bParityType)
usart_set_databits(USBUSART, (coding->bDataBits + 1 <= 8 ? 8 : 9));
else
usart_set_databits(USBUSART, (coding->bDataBits <= 8 ? 8 : 9));
switch(coding->bCharFormat) {
case 0:
usart_set_stopbits(USBUSART, USART_STOPBITS_1);
break;
case 1:
usart_set_stopbits(USBUSART, USART_STOPBITS_1_5);
break;
case 2:
default:
usart_set_stopbits(USBUSART, USART_STOPBITS_2);
break;
}
switch(coding->bParityType) {
case 0:
usart_set_parity(USBUSART, USART_PARITY_NONE);
break;
case 1:
usart_set_parity(USBUSART, USART_PARITY_ODD);
break;
case 2:
default:
usart_set_parity(USBUSART, USART_PARITY_EVEN);
break;
}
}
/*
* Copy data from fifo into continuous buffer. Return copied length.
*/
static uint32_t copy_from_fifo(uint8_t *dst, const uint8_t *src, uint32_t start, uint32_t end, uint32_t len, uint32_t fifo_sz)
{
uint32_t out_len = 0;
for (uint32_t buf_out = start; buf_out != end && out_len < len; buf_out %= fifo_sz)
dst[out_len++] = src[buf_out++];
return out_len;
}
/*
* Changes USBUSART TX buffer in which data is accumulated from USB.
* Filled buffer is submitted to DMA for transfer.
*/
static void usbuart_change_dma_tx_buf(void)
{
/* Select buffer for transmission */
uint8_t *const tx_buf_ptr = &buf_tx[buf_tx_act_idx * TX_BUF_SIZE];
/* Configure DMA */
dma_set_memory_address(USBUSART_DMA_BUS, USBUSART_DMA_TX_CHAN, (uint32_t)tx_buf_ptr);
dma_set_number_of_data(USBUSART_DMA_BUS, USBUSART_DMA_TX_CHAN, buf_tx_act_sz);
dma_enable_channel(USBUSART_DMA_BUS, USBUSART_DMA_TX_CHAN);
/* Change active buffer */
buf_tx_act_sz = 0;
buf_tx_act_idx ^= 1;
}
void usbuart_usb_out_cb(usbd_device *dev, uint8_t ep)
{
(void)ep;
usbd_ep_nak_set(dev, CDCACM_UART_ENDPOINT, 1);
/* Read new packet directly into TX buffer */
uint8_t *const tx_buf_ptr = &buf_tx[buf_tx_act_idx * TX_BUF_SIZE];
const uint16_t len = usbd_ep_read_packet(dev, CDCACM_UART_ENDPOINT,
tx_buf_ptr + buf_tx_act_sz, CDCACM_PACKET_SIZE);
#if defined(BLACKMAGIC)
/* Don't bother if uart is disabled.
* This will be the case on mini while we're being debugged.
*/
if(!(RCC_APB2ENR & RCC_APB2ENR_USART1EN))
{
usbd_ep_nak_set(dev, CDCACM_UART_ENDPOINT, 0);
return;
}
#endif
if (len)
{
buf_tx_act_sz += len;
/* If DMA is idle, schedule new transfer */
if (tx_trfr_cplt)
{
tx_trfr_cplt = false;
usbuart_change_dma_tx_buf();
/* Enable LED */
usbuart_set_led_state(TX_LED_ACT, true);
}
}
/* Enable USBUART TX packet reception if buffer has enough space */
if (TX_BUF_SIZE - buf_tx_act_sz >= CDCACM_PACKET_SIZE)
usbd_ep_nak_set(dev, CDCACM_UART_ENDPOINT, 0);
}
#ifdef USBUART_DEBUG
int usbuart_debug_write(const char *buf, size_t len)
{
if (nvic_get_active_irq(USB_IRQ) || nvic_get_active_irq(USBUSART_IRQ) || nvic_get_active_irq(USBUSART_DMA_RX_IRQ))
return 0;
CM_ATOMIC_CONTEXT();
for (size_t i = 0; i < len && (usb_dbg_in + 1) % RX_FIFO_SIZE != usb_dbg_out; i++)
{
if (buf[i] == '\n')
{
usb_dbg_buf[usb_dbg_in++] = '\r';
usb_dbg_in %= RX_FIFO_SIZE;
if ((usb_dbg_in + 1) % RX_FIFO_SIZE == usb_dbg_out)
break;
}
usb_dbg_buf[usb_dbg_in++] = buf[i];
usb_dbg_in %= RX_FIFO_SIZE;
}
usbuart_run();
return len;
}
#endif
/*
* Runs deferred processing for USBUSART RX, draining RX FIFO by sending
* characters to host PC via CDCACM. Allowed to write to FIFO OUT pointer.
*/
static void usbuart_send_rx_packet(void)
{
rx_usb_trfr_cplt = false;
/* Calculate writing position in the FIFO */
const uint32_t buf_rx_in = (RX_FIFO_SIZE - dma_get_number_of_data(USBUSART_DMA_BUS, USBUSART_DMA_RX_CHAN)) % RX_FIFO_SIZE;
/* Forcibly empty fifo if no USB endpoint.
* If fifo empty, nothing further to do. */
if (cdcacm_get_config() != 1 || (buf_rx_in == buf_rx_out
#ifdef USBUART_DEBUG
&& usb_dbg_in == usb_dbg_out
#endif
))
{
#ifdef USBUART_DEBUG
usb_dbg_out = usb_dbg_in;
#endif
buf_rx_out = buf_rx_in;
/* Turn off LED */
usbuart_set_led_state(RX_LED_ACT, false);
rx_usb_trfr_cplt = true;
}
else
{
/* To avoid the need of sending ZLP don't transmit full packet.
* Also reserve space for copy function overrun.
*/
uint8_t packet_buf[CDCACM_PACKET_SIZE - 1 + sizeof(uint64_t)];
uint32_t packet_size;
#ifdef USBUART_DEBUG
/* Copy data from DEBUG FIFO into local usb packet buffer */
packet_size = copy_from_fifo(packet_buf, usb_dbg_buf, usb_dbg_out, usb_dbg_in, CDCACM_PACKET_SIZE - 1, RX_FIFO_SIZE);
/* Send if buffer not empty */
if (packet_size)
{
const uint16_t written = usbd_ep_write_packet(usbdev, CDCACM_UART_ENDPOINT, packet_buf, packet_size);
usb_dbg_out = (usb_dbg_out + written) % RX_FIFO_SIZE;
return;
}
#endif
/* Copy data from uart RX FIFO into local usb packet buffer */
packet_size = copy_from_fifo(packet_buf, buf_rx, buf_rx_out, buf_rx_in, CDCACM_PACKET_SIZE - 1, RX_FIFO_SIZE);
/* Advance fifo out pointer by amount written */
const uint16_t written = usbd_ep_write_packet(usbdev, CDCACM_UART_ENDPOINT, packet_buf, packet_size);
buf_rx_out = (buf_rx_out + written) % RX_FIFO_SIZE;
}
}
void usbuart_usb_in_cb(usbd_device *dev, uint8_t ep)
{
(void) ep;
(void) dev;
usbuart_send_rx_packet();
}
static void usbuart_run(void)
{
nvic_disable_irq(USB_IRQ);
/* Enable LED */
usbuart_set_led_state(RX_LED_ACT, true);
/* Try to send a packet if usb is idle */
if (rx_usb_trfr_cplt)
usbuart_send_rx_packet();
nvic_enable_irq(USB_IRQ);
}
void USBUSART_ISR(void)
{
#if defined(USBUSART_DMA_RXTX_IRQ)
nvic_disable_irq(USBUSART_DMA_RXTX_IRQ);
#else
nvic_disable_irq(USBUSART_DMA_RX_IRQ);
#endif
/* Get IDLE flag and reset interrupt flags */
const bool isIdle = usart_get_flag(USBUSART, USART_FLAG_IDLE);
usart_recv(USBUSART);
/* If line is now idle, then transmit a packet */
if (isIdle) {
#if defined(USART_ICR)
USART_ICR(USBUSART) = USART_ICR_IDLECF;
#else
/* On the older uarts, the sequence "read flags", "read DR"
* as above cleared the flags */
#endif
usbuart_run();
}
#if defined(USBUSART_DMA_RXTX_IRQ)
nvic_enable_irq(USBUSART_DMA_RXTX_IRQ);
#else
nvic_enable_irq(USBUSART_DMA_RX_IRQ);
#endif
}
void USBUSART_DMA_TX_ISR(void)
{
nvic_disable_irq(USB_IRQ);
/* Stop DMA */
dma_disable_channel(USBUSART_DMA_BUS, USBUSART_DMA_TX_CHAN);
dma_clear_interrupt_flags(USBUSART_DMA_BUS, USBUSART_DMA_TX_CHAN, DMA_CGIF);
/* If new buffer is ready, continue transmission.
* Otherwise report transfer completion.
*/
if (buf_tx_act_sz)
{
usbuart_change_dma_tx_buf();
usbd_ep_nak_set(usbdev, CDCACM_UART_ENDPOINT, 0);
}
else
{
usbuart_set_led_state(TX_LED_ACT, false);
tx_trfr_cplt = true;
}
nvic_enable_irq(USB_IRQ);
}
void USBUSART_DMA_RX_ISR(void)
{
nvic_disable_irq(USBUSART_IRQ);
/* Clear flags */
dma_clear_interrupt_flags(USBUSART_DMA_BUS, USBUSART_DMA_RX_CHAN, DMA_CGIF);
/* Transmit a packet */
usbuart_run();
nvic_enable_irq(USBUSART_IRQ);
}
#if defined(USBUSART_DMA_RXTX_ISR)
void USBUSART_DMA_RXTX_ISR(void)
{
if (dma_get_interrupt_flag(USBUSART_DMA_BUS, USBUSART_DMA_RX_CHAN, DMA_CGIF))
USBUSART_DMA_RX_ISR();
if (dma_get_interrupt_flag(USBUSART_DMA_BUS, USBUSART_DMA_TX_CHAN, DMA_CGIF))
USBUSART_DMA_TX_ISR();
}
#endif
#ifdef ENABLE_DEBUG
enum {
RDI_SYS_OPEN = 0x01,
RDI_SYS_WRITE = 0x05,
RDI_SYS_ISTTY = 0x09,
};
int rdi_write(int fn, const char *buf, size_t len)
{
(void)fn;
#if defined(PLATFORM_HAS_DEBUG)
if (debug_bmp)
return len - usbuart_debug_write(buf, len);
#else
(void)buf;
(void)len;
#endif
return 0;
}
struct ex_frame {
union {
int syscall;
int retval;
};
const int *params;
uint32_t r2, r3, r12, lr, pc;
};
void debug_monitor_handler_c(struct ex_frame *sp)
{
/* Return to after breakpoint instruction */
sp->pc += 2;
switch (sp->syscall) {
case RDI_SYS_OPEN:
sp->retval = 1;
break;
case RDI_SYS_WRITE:
sp->retval = rdi_write(sp->params[0], (void*)sp->params[1], sp->params[2]);
break;
case RDI_SYS_ISTTY:
sp->retval = 1;
break;
default:
sp->retval = -1;
}
}
asm(".globl debug_monitor_handler\n"
".thumb_func\n"
"debug_monitor_handler: \n"
" mov r0, sp\n"
" b debug_monitor_handler_c\n");
#endif