2010-03-24 20:36:19 +01:00

189 lines
5.6 KiB
C

/*
* This file is part of the libopenstm32 project.
*
* Copyright (C) 2010 Thomas Otto <tommi@viadmin.org>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <libopenstm32/rcc.h>
#include <libopenstm32/flash.h>
#include <libopenstm32/gpio.h>
#include <libopenstm32/usart.h>
#include <libopenstm32/adc.h>
/* Set STM32 to 72 MHz. HSE 16MHz */
void clock_setup(void)
{
/* enable Internal High Speed Oscillator */
rcc_osc_on(HSI);
rcc_wait_for_osc_ready(HSI);
/* Select HSI as SYSCLK source. */
rcc_set_sysclk_source(SW_SYSCLKSEL_HSICLK);
/* enable External High Speed Oscillator 16MHz */
rcc_osc_on(HSE);
rcc_wait_for_osc_ready(HSE);
rcc_set_sysclk_source(SW_SYSCLKSEL_HSECLK);
/* set prescalers for ADC, ABP1, ABP2... make this before touching the PLL */
rcc_set_hpre(HPRE_SYSCLK_NODIV); //prescales the AHB clock from the SYSCLK
rcc_set_adcpre(ADCPRE_PLCK2_DIV6); //prescales the ADC from the APB2 clock; max 14MHz
rcc_set_ppre1(PPRE1_HCLK_DIV2); //prescales the APB1 from the AHB clock; max 36MHz
rcc_set_ppre2(PPRE2_HCLK_NODIV); //prescales the APB2 from the AHB clock; max 72MHz
/* sysclk should run with 72MHz -> 2 Waitstates ; choose 0WS from 0-24MHz, 1WS from 24-48MHz, 2WS from 48-72MHz */
flash_set_ws(FLASH_LATENCY_2WS);
/* Set the PLL multiplication factor to 9. -> 16MHz (external) * 9 (multiplier) / 2 (PLLXTPRE_HSE_CLK_DIV2) = 72MHz */
rcc_set_pll_multiplication_factor(PLLMUL_PLL_CLK_MUL9);
/* Select HSI as PLL source. */
rcc_set_pll_source(PLLSRC_HSE_CLK);
/* divide external frequency by 2 before entering pll (only valid/needed for HSE) */
rcc_set_pllxtpre(PLLXTPRE_HSE_CLK_DIV2);
/* Enable PLL oscillator and wait for it to stabilize. */
rcc_osc_on(PLL);
rcc_wait_for_osc_ready(PLL);
/* Select PLL as SYSCLK source. */
rcc_set_sysclk_source(SW_SYSCLKSEL_PLLCLK);
}
void usart_setup(void)
{
/* Enable clocks for GPIO port A (for GPIO_USART1_TX) and USART1. */
rcc_peripheral_enable_clock(&RCC_APB2ENR, IOPAEN);
rcc_peripheral_enable_clock(&RCC_APB2ENR, USART1EN);
/* Setup GPIO pin GPIO_USART1_TX/GPIO9 on GPIO port A for transmit. */
gpio_set_mode(GPIOA, GPIO_MODE_OUTPUT_50_MHZ,
GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, GPIO_USART1_TX);
/* Setup UART parameters. */
usart_set_baudrate(USART1, 115200);
usart_set_databits(USART1, 8);
usart_set_stopbits(USART1, USART_STOPBITS_1);
usart_set_mode(USART1, USART_MODE_TX_RX);
usart_set_parity(USART1, USART_PARITY_NONE);
usart_set_flow_control(USART1, USART_FLOWCONTROL_NONE);
/* Finally enable the USART. */
usart_enable(USART1);
}
void gpio_setup(void)
{
/* Enable GPIOB clock. */
rcc_peripheral_enable_clock(&RCC_APB2ENR, IOPBEN);
/* Set GPIO6/7 (in GPIO port B) to 'output push-pull' for the LEDs. */
gpio_set_mode(GPIOB, GPIO_MODE_OUTPUT_2_MHZ,
GPIO_CNF_OUTPUT_PUSHPULL, GPIO6);
gpio_set_mode(GPIOB, GPIO_MODE_OUTPUT_2_MHZ,
GPIO_CNF_OUTPUT_PUSHPULL, GPIO7);
}
void adc_setup(void)
{
int i;
rcc_peripheral_enable_clock(&RCC_APB2ENR, ADC1EN);
/* make shure it didnt run during config */
adc_off(ADC1);
/* we configure everything for one single conversion */
adc_disable_scan_mode(ADC1);
adc_set_single_conversion_mode(ADC1);
adc_enable_discontinous_mode_regular(ADC1);
adc_disable_external_trigger_regular(ADC1);
adc_set_right_aligned(ADC1);
/* we want read out the temperature sensor so we have to enable it */
adc_enable_temperature_sensor(ADC1);
adc_set_conversion_time_on_all_channels(ADC1, ADC_SMPR_SMP_28DOT5CYC);
adc_on(ADC1);
/* wait for adc starting up*/
for (i = 0; i < 80000; i++); /* Wait (needs -O0 CFLAGS). */
adc_reset_calibration(ADC1);
adc_calibration(ADC1);
}
void my_usart_print_int(u32 usart, int value)
{
s8 i;
u8 nr_digits = 0;
char buffer[25];
if (value < 0) {
usart_send(usart, '-');
value = value * -1;
}
while (value > 0) {
buffer[nr_digits++] = "0123456789"[value%10];
value = value/10;
}
for (i=nr_digits; i>=0; i--) {
usart_send(usart, buffer[i]);
}
}
int main(void)
{
u8 channel_array[16];
u16 temperature;
clock_setup();
gpio_setup();
usart_setup();
adc_setup();
gpio_clear(GPIOB, GPIO7); /* LED1 on */
gpio_set(GPIOB, GPIO6); /* LED2 off */
/* Send a message on USART1. */
usart_send(USART1, 's');
usart_send(USART1, 't');
usart_send(USART1, 'm');
usart_send(USART1, '\r');
usart_send(USART1, '\n');
/* Select the channel we want to convert. 16=temperature_sensor */
channel_array[0] = 16;
adc_set_regular_sequence(ADC1, 1, channel_array);
/* If the ADC_CR2_ON bit is already set -> setting it another time starts the conversion */
adc_on(ADC1);
/* Waiting for end of conversion */
while (!(ADC_SR(ADC1) & ADC_SR_EOC));
temperature = ADC_DR(ADC1);
/* thats actually not the real temparature - you have to compute it like described in the datasheet */
my_usart_print_int(USART1, temperature);
gpio_clear(GPIOB, GPIO6); /* LED2 on */
while(1); /* Halt. */
return 0;
}