Karl Palsson d9fb4f7401 Add examples making use of the RTC
Add an example using the RTC to help with a lower power design.  This is
a sister example to the existing "button-irq-printf", which is
functionally identical, but uses far less power.

There's more tricks that can be done to lower the power even further,
but this shows a few of the early steps that can be done, using the RTC
wakeup instead of a timer.
2013-01-23 00:01:46 +00:00

300 lines
7.4 KiB
C

/*
* This file is part of the libopencm3 project.
*
* Copyright (C) 2012 Karl Palsson <karlp@tweak.net.au>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#include <errno.h>
#include <stdio.h>
#include <unistd.h>
#include <libopencm3/cm3/nvic.h>
#include <libopencm3/cm3/scb.h>
#include <libopencm3/stm32/dbgmcu.h>
#include <libopencm3/stm32/gpio.h>
#include <libopencm3/stm32/pwr.h>
#include <libopencm3/stm32/exti.h>
#include <libopencm3/stm32/timer.h>
#include <libopencm3/stm32/usart.h>
#include <libopencm3/stm32/rtc.h>
#include <libopencm3/stm32/l1/rcc.h>
#include <libopencm3/stm32/l1/flash.h>
#include "syscfg.h"
static volatile struct state_t state;
__attribute__((always_inline)) static inline void __WFI(void)
{
__asm volatile ("wfi");
}
void gpio_setup(void)
{
/* green led for ticking, blue for button feedback */
gpio_mode_setup(LED_DISCO_GREEN_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, LED_DISCO_GREEN_PIN);
gpio_mode_setup(LED_DISCO_BLUE_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, LED_DISCO_BLUE_PIN);
/* Setup GPIO pins for USART2 transmit. */
gpio_mode_setup(GPIOA, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO2);
/* Setup USART2 TX pin as alternate function. */
gpio_set_af(GPIOA, GPIO_AF7, GPIO2);
}
void BUTTON_DISCO_USER_isr(void)
{
exti_reset_request(BUTTON_DISCO_USER_EXTI);
state.pressed = true;
if (state.falling) {
state.falling = false;
exti_set_trigger(BUTTON_DISCO_USER_EXTI, EXTI_TRIGGER_RISING);
state.hold_time = TIM_CNT(TIMER_BUTTON_PRESS);
} else {
state.falling = true;
exti_set_trigger(BUTTON_DISCO_USER_EXTI, EXTI_TRIGGER_FALLING);
state.hold_time = TIM_CNT(TIMER_BUTTON_PRESS) = 0;
}
}
void setup_buttons(void)
{
/* Enable EXTI0 interrupt. */
nvic_enable_irq(BUTTON_DISCO_USER_NVIC);
gpio_mode_setup(BUTTON_DISCO_USER_PORT, GPIO_MODE_INPUT, GPIO_PUPD_NONE, BUTTON_DISCO_USER_PIN);
/* Configure the EXTI subsystem. */
exti_select_source(BUTTON_DISCO_USER_EXTI, BUTTON_DISCO_USER_PORT);
state.falling = false;
exti_set_trigger(BUTTON_DISCO_USER_EXTI, EXTI_TRIGGER_RISING);
exti_enable_request(BUTTON_DISCO_USER_EXTI);
}
void usart_setup(void)
{
usart_set_baudrate(USART_CONSOLE, 115200);
usart_set_databits(USART_CONSOLE, 8);
usart_set_stopbits(USART_CONSOLE, USART_STOPBITS_1);
usart_set_mode(USART_CONSOLE, USART_MODE_TX);
usart_set_parity(USART_CONSOLE, USART_PARITY_NONE);
usart_set_flow_control(USART_CONSOLE, USART_FLOWCONTROL_NONE);
/* Finally enable the USART. */
usart_enable(USART_CONSOLE);
}
/**
* Use USART_CONSOLE as a console.
* @param file
* @param ptr
* @param len
* @return
*/
int _write(int file, char *ptr, int len)
{
int i;
if (file == STDOUT_FILENO || file == STDERR_FILENO) {
for (i = 0; i < len; i++) {
if (ptr[i] == '\n') {
usart_send_blocking(USART_CONSOLE, '\r');
}
usart_send_blocking(USART_CONSOLE, ptr[i]);
}
return i;
}
errno = EIO;
return -1;
}
/*
* Free running ms timer.
*/
void setup_button_press_timer(void)
{
timer_reset(TIMER_BUTTON_PRESS);
timer_set_prescaler(TIMER_BUTTON_PRESS, 3999); // 4Mhz/1000hz - 1
timer_set_period(TIMER_BUTTON_PRESS, 0xffff);
timer_enable_counter(TIMER_BUTTON_PRESS);
}
int setup_rtc(void)
{
/* turn on power block to enable unlocking */
rcc_peripheral_enable_clock(&RCC_APB1ENR, RCC_APB1ENR_PWREN);
pwr_disable_backup_domain_write_protect();
/* reset rtc */
RCC_CSR |= RCC_CSR_RTCRST;
RCC_CSR &= ~RCC_CSR_RTCRST;
/* We want to use the LSE fitted on the discovery board */
rcc_osc_on(LSE);
rcc_wait_for_osc_ready(LSE);
/* Select the LSE as rtc clock */
rcc_rtc_select_clock(RCC_CSR_RTCSEL_LSE);
/* ?! Stdperiph examples don't turn this on until _afterwards_ which
* simply doesn't work. It must be on at least to be able to configure it */
RCC_CSR |= RCC_CSR_RTCEN;
rtc_unlock();
/* enter init mode */
RTC_ISR |= RTC_ISR_INIT;
while ((RTC_ISR & RTC_ISR_INITF) == 0)
;
/* set synch prescaler, using defaults for 1Hz out */
u32 sync = 255;
u32 async = 127;
rtc_set_prescaler(sync, async);
/* load time and date here if desired, and hour format */
/* exit init mode */
RTC_ISR &= ~(RTC_ISR_INIT);
/* and write protect again */
rtc_lock();
/* and finally enable the clock */
RCC_CSR |= RCC_CSR_RTCEN;
/* And wait for synchro.. */
rtc_wait_for_synchro();
return 0;
}
int setup_rtc_wakeup(int period)
{
rtc_unlock();
/* ensure wakeup timer is off */
RTC_CR &= ~RTC_CR_WUTE;
/* Wait until we can write */
while ((RTC_ISR & RTC_ISR_WUTWF) == 0)
;
RTC_WUTR = period - 1;
/* Use the 1Hz clock as source */
RTC_CR &= ~(RTC_CR_WUCLKSEL_MASK << RTC_CR_WUCLKSEL_SHIFT);
RTC_CR |= (RTC_CR_WUCLKSEL_SPRE << RTC_CR_WUCLKSEL_SHIFT);
/* Restart WakeUp unit */
RTC_CR |= RTC_CR_WUTE;
/* interrupt configuration */
/* also, let's have an interrupt */
RTC_CR |= RTC_CR_WUTIE;
/* done with rtc registers, lock them again */
rtc_lock();
nvic_enable_irq(NVIC_RTC_WKUP_IRQ);
// EXTI configuration
/* Configure the EXTI subsystem. */
// not needed, this chooses ports exti_select_source(EXTI20, BUTTON_DISCO_USER_PORT);
exti_set_trigger(EXTI20, EXTI_TRIGGER_RISING);
exti_enable_request(EXTI20);
return 0;
}
void rtc_wkup_isr(void)
{
/* clear flag, not write protected */
RTC_ISR &= ~(RTC_ISR_WUTF);
exti_reset_request(EXTI20);
state.rtc_ticked = true;
}
int process_state(volatile struct state_t *st)
{
if (st->rtc_ticked) {
st->rtc_ticked = 0;
printf("Tick: %x\n", (unsigned int) RTC_TR);
#if FULL_USER_EXPERIENCE
gpio_toggle(LED_DISCO_GREEN_PORT, LED_DISCO_GREEN_PIN);
#else
gpio_clear(LED_DISCO_GREEN_PORT, LED_DISCO_GREEN_PIN);
#endif
}
if (st->pressed) {
st->pressed = false;
if (st->falling) {
gpio_set(LED_DISCO_BLUE_PORT, LED_DISCO_BLUE_PIN);
printf("Pushed down!\n");
} else {
gpio_clear(LED_DISCO_BLUE_PORT, LED_DISCO_BLUE_PIN);
printf("held: %u ms\n", st->hold_time);
}
}
return 0;
}
void reset_clocks(void)
{
/* 4MHz MSI raw range 2*/
clock_scale_t myclock_config = {
.hpre = RCC_CFGR_HPRE_SYSCLK_NODIV,
.ppre1 = RCC_CFGR_PPRE1_HCLK_NODIV,
.ppre2 = RCC_CFGR_PPRE2_HCLK_NODIV,
.voltage_scale = RANGE2,
.flash_config = FLASH_LATENCY_0WS,
.apb1_frequency = 4194000,
.apb2_frequency = 4194000,
.msi_range = RCC_ICSCR_MSIRANGE_4MHZ,
};
rcc_clock_setup_msi(&myclock_config);
/* buttons and uarts */
rcc_peripheral_enable_clock(&RCC_AHBENR, RCC_AHBENR_GPIOAEN);
/* user feedback leds */
rcc_peripheral_enable_clock(&RCC_AHBENR, RCC_AHBENR_GPIOBEN);
/* Enable clocks for USART2. */
rcc_peripheral_enable_clock(&RCC_APB1ENR, RCC_APB1ENR_USART2EN);
/* And a timers for button presses */
rcc_peripheral_enable_clock(&RCC_APB1ENR, RCC_APB1ENR_TIM7EN);
}
int main(void)
{
reset_clocks();
gpio_setup();
usart_setup();
setup_buttons();
setup_button_press_timer();
printf("we're awake!\n");
setup_rtc();
setup_rtc_wakeup(1);
while (1) {
PWR_CR |= PWR_CR_LPSDSR;
pwr_set_stop_mode();
__WFI();
reset_clocks();
process_state(&state);
}
return 0;
}