Karl Palsson f67e217ffb stm32: adc-v2: Pull up the two forms of the adc-v2
The adc v2 periph has the same register map, but comes in two flavours, one
supporting injected channels, more watchdogs, per channel sampling times and
so on, and one "simple" version.

Pull up the f3 and f0 portions into the appropriate files, after comparing with
L0 and L4 reference manuals, even if those are not fully landed yet.
2016-03-30 16:59:56 +00:00

734 lines
21 KiB
C

/** @defgroup adc_file ADC
*
* @ingroup STM32F0xx
*
* @brief <b>libopencm3 STM32F0xx Analog to Digital Converters</b>
*
* based on F3 file
*
* @date 14 July 2013
*
* LGPL License Terms @ref lgpl_license
*/
/*
* This file is part of the libopencm3 project.
*
* Copyright (C) 2012 Ken Sarkies <ksarkies@internode.on.net>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#include <libopencm3/cm3/assert.h>
#include <libopencm3/stm32/adc.h>
/**@{*/
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/**
* @defgroup adc_api_opmode ADC Operation mode API
* @ingroup adc_file
*
* @brief ADC Result API
*
*@{*/
/*---------------------------------------------------------------------------*/
/** @brief ADC Enable Discontinuous Mode for Regular Conversions
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
*/
void adc_enable_discontinuous_mode(uint32_t adc)
{
ADC_CFGR1(adc) |= ADC_CFGR1_DISCEN;
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Disable Discontinuous Mode for Regular Conversions
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
*/
void adc_disable_discontinuous_mode(uint32_t adc)
{
ADC_CFGR1(adc) &= ~ADC_CFGR1_DISCEN;
}
/*---------------------------------------------------------------------------*/
/** ADC Set operation mode
*
* There are some operation modes, common for entire stm32 branch. In the text
* the braces are describing result to single trigger event. The trigger event
* is described by character T in the description. The ADC is configured to
* convert list of inputs [0, 1, 2, 3]. In Grouped modes, there is used group
* size of 2 conversions in the examples
*
* @li @c ADC_MODE_SEQUENTIAL: T(0) T(1) T(2) T(3)[EOSEQ] T(0) T(1) T(2) ...
*
* In this mode, after the trigger event a single channel is converted and the
* next channel in the list is prepared to convert on next trigger edge.
*
* @note This mode can be emulated by ADC_MODE_GROUPED with group size
* of 1. @par
*
* @li @c ADC_MODE_SCAN: T(0123)[EOSEQ] T(0123)[EOSEQ] T(0123)[EOSEQ]
*
* In this mode, after the trigger event, all channels will be converted once,
* storing results sequentially.
*
* @note The DMA must be configured properly for more than single channel to
* convert. @par
*
* @li @c ADC_MODE_SCAN_INFINITE: T(0123[EOSEQ]0123[EOSEQ]0123[EOSEQ]...)
*
* In this mode, after the trigger event, all channels from the list are
* converted. At the end of list, the conversion continues from the beginning.
*
* @note The DMA must be configured properly to operate in this mode.@par
*
* @li @c ADC_MODE_GROUPED: T(12) T(34)[EOSEQ] T(12) T(34)[EOSEQ] T(12)
*
* In this mode, after the trigger event, a specified group size of channels
* are converted. If the end of channel list occurs, the EOSEQ is generated
* and on the next trigger it wraps to the beginning.
*
* @note The DMA must be configured properly to operate on more than single
* channel conversion groups.@par
*
* @warning not all families supports all modes of operation of ADC.
*
* @par
*
*/
/*---------------------------------------------------------------------------*/
/** @brief ADC Set conversion operation mode
*
* @note on SEQUENTIAL mode, the trigger event is necessary to start conversion.
* @par
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
* @param[in] adc ::adc_opmode. ADC operation mode (@ref adc_opmode)
*/
void adc_set_operation_mode(uint32_t adc, enum adc_opmode opmode)
{
switch (opmode) {
case ADC_MODE_SEQUENTIAL:
ADC_CFGR1(adc) &= ~ADC_CFGR1_CONT;
ADC_CFGR1(adc) |= ADC_CFGR1_DISCEN;
break;
case ADC_MODE_SCAN:
ADC_CFGR1(adc) &= ~(ADC_CFGR1_CONT | ADC_CFGR1_DISCEN);
break;
case ADC_MODE_SCAN_INFINITE:
ADC_CFGR1(adc) &= ~ADC_CFGR1_DISCEN;
ADC_CFGR1(adc) |= ADC_CFGR1_CONT;
break;
}
}
/**@}*/
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/**
* @defgroup adc_api_result ADC Result API
* @ingroup adc_file
*
* @brief ADC Result API
*
*@{*/
/*---------------------------------------------------------------------------*/
/** @brief ADC Software Triggered Conversion on Regular Channels
*
* This starts conversion on a set of defined regular channels. It is cleared
* by hardware once conversion starts.
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
*/
void adc_start_conversion_regular(uint32_t adc)
{
/* Start conversion on regular channels. */
ADC_CR(adc) |= ADC_CR_ADSTART;
/* Wait until the ADC starts the conversion. */
while (ADC_CR(adc) & ADC_CR_ADSTART);
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Read the End-of-Conversion Flag
*
* This flag is set after all channels of a regular or injected group have been
* converted.
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
* @returns bool. End of conversion flag.
*/
bool adc_eoc(uint32_t adc)
{
return ((ADC_ISR(adc) & ADC_ISR_EOC) != 0);
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Read from the Regular Conversion Result Register
*
* The result read back is 12 bits, right or left aligned within the first
* 16 bits. For ADC1 only, the higher 16 bits will hold the result from ADC2 if
* an appropriate dual mode has been set @see adc_set_dual_mode.
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
* @returns Unsigned int32 conversion result.
*/
uint32_t adc_read_regular(uint32_t adc)
{
return ADC_DR(adc);
}
/**@}*/
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/**
* @defgroup adc_api_trigger ADC Trigger API
* @ingroup adc_file
*
* @brief ADC Trigger API
*
*@{*/
/*---------------------------------------------------------------------------*/
/** @brief ADC Enable an External Trigger for Regular Channels
*
* This enables an external trigger for set of defined regular channels, and
* sets the polarity of the trigger event: rising or falling edge or both. Note
* that if the trigger polarity is zero, triggering is disabled.
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
* @param[in] trigger Unsigned int32. Trigger identifier
* @ref adc_trigger_regular
* @param[in] polarity Unsigned int32. Trigger polarity @ref
* adc_trigger_polarity_regular
*/
void adc_enable_external_trigger_regular(uint32_t adc, uint32_t trigger,
uint32_t polarity)
{
ADC_CFGR1(adc) = (ADC_CFGR1(adc) & ~ADC_CFGR1_EXTSEL) | trigger;
ADC_CFGR1(adc) = (ADC_CFGR1(adc) & ~ADC_CFGR1_EXTEN_MASK) | polarity;
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Disable an External Trigger for Regular Channels
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
*/
void adc_disable_external_trigger_regular(uint32_t adc)
{
ADC_CFGR1(adc) &= ~ADC_CFGR1_EXTEN_MASK;
}
/**@}*/
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/**
* @defgroup adc_api_interrupts ADC Interrupt configuration API
* @ingroup adc_file
*
* @brief ADC Interrupt configuration API
*
*@{*/
/*---------------------------------------------------------------------------*/
/** @brief ADC Enable Analog Watchdog Interrupt
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
*/
void adc_enable_watchdog_interrupt(uint32_t adc)
{
ADC_IER(adc) |= ADC_IER_AWD1IE;
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Disable Regular End-Of-Conversion Interrupt
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
*/
void adc_disable_watchdog_interrupt(uint32_t adc)
{
ADC_IER(adc) &= ~ADC_IER_AWD1IE;
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Read the Analog Watchdog Flag
*
* This flag is set when the converted voltage crosses the high or low
* thresholds.
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
* @returns bool true, if the signal is out of defined analog range.
*/
bool adc_get_watchdog_flag(uint32_t adc)
{
return ADC_ISR(adc) & ADC_ISR_AWD1;
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Clear Analog Watchdog Flag
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
*/
void adc_clear_watchdog_flag(uint32_t adc)
{
ADC_ISR(adc) = ADC_ISR_AWD1;
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Enable the Overrun Interrupt
*
* The overrun interrupt is generated when data is not read from a result
* register before the next conversion is written. If DMA is enabled, all
* transfers are terminated and any conversion sequence is aborted.
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
*/
void adc_enable_overrun_interrupt(uint32_t adc)
{
ADC_IER(adc) |= ADC_IER_OVRIE;
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Disable the Overrun Interrupt
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
*/
void adc_disable_overrun_interrupt(uint32_t adc)
{
ADC_IER(adc) &= ~ADC_IER_OVRIE;
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Read the Overrun Flag
*
* The overrun flag is set when data is not read from a result register before
* the next conversion is written. If DMA is enabled, all transfers are
* terminated and any conversion sequence is aborted.
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
*/
bool adc_get_overrun_flag(uint32_t adc)
{
return ADC_ISR(adc) & ADC_ISR_OVR;
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Clear Overrun Flags
*
* The overrun flag is cleared. Note that if an overrun occurs, DMA is
* terminated.
* The flag must be cleared and the DMA stream and ADC reinitialised to resume
* conversions (see the reference manual).
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
*/
void adc_clear_overrun_flag(uint32_t adc)
{
ADC_ISR(adc) = ADC_ISR_OVR;
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Enable Regular End-Of-Conversion Sequence Interrupt
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
*/
void adc_enable_eoc_sequence_interrupt(uint32_t adc)
{
ADC_IER(adc) |= ADC_IER_EOSEQIE;
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Disable Regular End-Of-Conversion Sequence Interrupt
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
*/
void adc_disable_eoc_sequence_interrupt(uint32_t adc)
{
ADC_IER(adc) &= ~ADC_IER_EOSEQIE;
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Read the Regular End-Of-Conversion Sequence Flag
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
*/
bool adc_get_eoc_sequence_flag(uint32_t adc)
{
return ADC_ISR(adc) & ADC_ISR_EOSEQ;
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Enable Regular End-Of-Conversion Interrupt
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
*/
void adc_enable_eoc_interrupt(uint32_t adc)
{
ADC_IER(adc) |= ADC_IER_EOCIE;
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Disable Regular End-Of-Conversion Interrupt
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
*/
void adc_disable_eoc_interrupt(uint32_t adc)
{
ADC_IER(adc) &= ~ADC_IER_EOCIE;
}
/**@}*/
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/**
* @defgroup adc_api_config ADC Basic configuration API
* @ingroup adc_file
*
* @brief ADC Basic configuration API
*
*@{*/
/*---------------------------------------------------------------------------*/
/** @brief ADC Set Clock Prescale
*
* The ADC clock taken from the many sources.
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
* @param[in] prescale Unsigned int32. Prescale value (@ref adc_api_clksource)
*/
void adc_set_clk_source(uint32_t adc, uint32_t source)
{
ADC_CFGR2(adc) = ((ADC_CFGR2(adc) & ~ADC_CFGR2_CKMODE) | source);
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Set a Regular Channel Conversion Sequence
*
* Define a sequence of channels to be converted as a regular group with a
* length from 1 to 18 channels. If this is called during conversion, the
* current conversion is reset and conversion begins again with the newly
* defined group.
*
* @warning This core doesn't support the random order of ADC conversions.
* The channel list must be ordered by channel number.
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
* @param[in] length Unsigned int8. Number of channels in the group.
* @param[in] channel Unsigned int8[]. Set of channels to convert, integers
* 0..18.
*/
void adc_set_regular_sequence(uint32_t adc, uint8_t length, uint8_t channel[])
{
uint32_t reg32 = 0;
uint8_t i = 0;
bool stepup = false, stepdn = false;
if (length == 0) {
ADC_CHSELR(adc) = 0;
return;
}
reg32 |= (1 << channel[0]);
for (i = 1; i < length; i++) {
reg32 |= (1 << channel[i]);
stepup |= channel[i-1] < channel[i];
stepdn |= channel[i-1] > channel[i];
}
/* Check, if the channel list is in order */
if (stepup && stepdn) {
cm3_assert_not_reached();
}
/* Update the scan direction flag */
if (stepdn) {
ADC_CFGR1(adc) |= ADC_CFGR1_SCANDIR;
} else {
ADC_CFGR1(adc) &= ~ADC_CFGR1_SCANDIR;
}
ADC_CHSELR(adc) = reg32;
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Set the Sample Time for All Channels
*
* The sampling time can be selected in ADC clock cycles from 1.5 to 239.5,
* same for all channels.
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
* @param[in] time Unsigned int8. Sampling time selection (@ref adc_api_smptime)
*/
void adc_set_sample_time_on_all_channels(uint32_t adc, uint8_t time)
{
ADC_SMPR(adc) = time & ADC_SMPR_SMP;
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Set Resolution
*
* ADC Resolution can be reduced from 12 bits to 10, 8 or 6 bits for a
* corresponding reduction in conversion time.
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
* @param[in] resolution Unsigned int16. Resolution value (@ref adc_api_res)
*/
void adc_set_resolution(uint32_t adc, uint16_t resolution)
{
ADC_CFGR1(adc) = (ADC_CFGR1(adc) & ~ADC_CFGR1_RES_MASK) | resolution;
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Set the Data as Left Aligned
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
*/
void adc_set_left_aligned(uint32_t adc)
{
ADC_CFGR1(adc) |= ADC_CFGR1_ALIGN;
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Set the Data as Right Aligned
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
*/
void adc_set_right_aligned(uint32_t adc)
{
ADC_CFGR1(adc) &= ~ADC_CFGR1_ALIGN;
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Enable DMA Transfers
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
*/
void adc_enable_dma(uint32_t adc)
{
ADC_CFGR1(adc) |= ADC_CFGR1_DMAEN;
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Disable DMA Transfers
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
*/
void adc_disable_dma(uint32_t adc)
{
ADC_CFGR1(adc) &= ~ADC_CFGR1_DMAEN;
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Enable The VBat Sensor
*
* This enables the battery voltage measurements on channel 17.
*/
void adc_enable_vbat_sensor(void)
{
ADC_CCR(ADC1) |= ADC_CCR_VBATEN;
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Disable The VBat Sensor
*
* Disabling this will reduce power consumption from the battery voltage
* measurement.
*/
void adc_disable_vbat_sensor(void)
{
ADC_CCR(ADC1) &= ~ADC_CCR_VBATEN;
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Start the calibration procedure
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
*/
void adc_calibrate_start(uint32_t adc)
{
ADC_CR(adc) = ADC_CR_ADCAL;
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Wait to finish the ADC calibration procedure
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
*/
void adc_calibrate_wait_finish(uint32_t adc)
{
while (ADC_CR(adc) & ADC_CR_ADCAL);
}
/**@}*/
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/**
* @defgroup adc_api_wdg ADC Analog watchdog API
* @ingroup adc_file
*
* @brief ADC analog watchdog API definitions.
*
* The analog watchdog allows the monitoring of an analog signal between two
* threshold levels. The thresholds must be preset. Analog watchdog is disabled
* by default.
*
* @warning Comparison is done before data alignment takes place, so the
* thresholds are left-aligned.
*
* Example 1: Enable watchdog checking on all channels
*
* @code
* // in configuration
* adc_enable_analog_watchdog_on_all_channels(ADC1);
* adc_set_watchdog_high_threshold(ADC1, 0xE00);
* adc_set_watchdog_low_threshold(ADC1, 0x200);
*
* // in the main application thread
* if (adc_get_watchdog_flag(ADC1)) {
* // the converted signal is out of AWD ranges
* adc_clear_watchdog_flag(ADC1);
* }
* @endcode
*
* Example 2: Enable watchdog checking on channel 5
*
* @code
* // in configuration
* adc_enable_analog_watchdog_on_selected_channel(ADC1,5);
* adc_set_watchdog_high_threshold(ADC1, 0xE00);
* adc_set_watchdog_low_threshold(ADC1, 0x200);
*
* // in the main application thread
* if (adc_get_watchdog_flag(ADC1)) {
* // the converted signal is out of AWD ranges
* adc_clear_watchdog_flag(ADC1);
* }
* @endcode
*@{*/
/*---------------------------------------------------------------------------*/
/** @brief ADC Enable Analog Watchdog for All Channels
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
*/
void adc_enable_analog_watchdog_on_all_channels(uint32_t adc)
{
ADC_CFGR1(adc) |= ADC_CFGR1_AWD1EN;
ADC_CFGR1(adc) &= ~ADC_CFGR1_AWD1SGL;
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Enable Analog Watchdog for a Selected Channel
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
* @param[in] chan Unsigned int8. ADC channel number @ref adc_api_channel
*/
void adc_enable_analog_watchdog_on_selected_channel(uint32_t adc, uint8_t chan)
{
ADC_CFGR1(adc) = (ADC_CFGR1(adc) & ~ADC_CFGR1_AWD1CH) |
ADC_CFGR1_AWD1CH_VAL(chan);
ADC_CFGR1(adc) |= ADC_CFGR1_AWD1EN | ADC_CFGR1_AWD1SGL;
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Disable Analog Watchdog
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
*/
void adc_disable_analog_watchdog(uint32_t adc)
{
ADC_CFGR1(adc) &= ~ADC_CFGR1_AWD1EN;
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Set Analog Watchdog Upper Threshold
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
* @param[in] threshold Unsigned int8. Upper threshold value
*/
void adc_set_watchdog_high_threshold(uint32_t adc, uint8_t threshold)
{
ADC_TR1(adc) = (ADC_TR1(adc) & ~ADC_TR1_HT) | ADC_TR1_HT_VAL(threshold);
}
/*---------------------------------------------------------------------------*/
/** @brief ADC Set Analog Watchdog Lower Threshold
*
* @param[in] adc Unsigned int32. ADC base address (@ref adc_reg_base)
* @param[in] threshold Unsigned int8. Lower threshold value
*/
void adc_set_watchdog_low_threshold(uint32_t adc, uint8_t threshold)
{
ADC_TR1(adc) = (ADC_TR1(adc) & ~ADC_TR1_LT) | ADC_TR1_LT_VAL(threshold);
}
/**@}*/
/*---------------------------------------------------------------------------*/
/**@}*/