JackCarterSmith cdee81d3ff
Registers tweaks
Prepare for new registers structure used in v1
2025-06-07 15:57:31 +02:00

780 lines
23 KiB
C

/**
******************************************************************************
*
* Copyright (c) 2025 C.ARE (JackCarterSmith).
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
*
******************************************************************************
*
* SYS_LED and COL_x are open-drain, output logic is inverted.
*
* Unless requested by the user through REG_ID_PWR_CTRL register or by removing
* the batteries, pressing the power button when running now put the STM32 in
* low-power stop mode and shutdown the PICO board.
* It's the only mean to keep the RTC functional.
* A full shutdown using AXP2101 power-off or by removing the batteries will
* reset the RTC and disable auto wake-up feature.
*
*/
#include "hal_interface.h"
#include "axp2101.h"
#include "backlight.h"
#include "batt.h"
#include "eeprom.h"
#include "fifo.h"
#include "keyboard.h"
#include "i2cs.h"
#include "regs.h"
#include "rtc.h"
// Private define ------------------------------------------------------------
//#define DEFAULT_LCD_BL (205) // ~40% PWM@7.81kHz (9 bits resolution)
//#define DEFAULT_KBD_BL (20) // ~4% PWM@7.81kHz (9 bits resolution)
#define DEFAULT_LCD_BL (3) //step-4 (~50%)
#define DEFAULT_KBD_BL (0) //step-1 (0%)
#define DEFAULT_KBD_FREQ (KEY_POLL_TIME)
#define DEFAULT_KBD_DEB (KEY_HOLD_TIME)
#define DEFAULT_RCT_CFG (0x00)
#ifdef DEBUG
#define DEBUG_UART_MSG(msg) HAL_UART_Transmit(&huart1, (uint8_t*)msg, sizeof(msg)-1, 1000)
//#define DEBUG_UART_MSG2(d,s) HAL_UART_Transmit(&huart1, (uint8_t*)d, s, 200)
#define DEBUG_UART_MSG2(d,sz, swp) uart_rawdata_write(d,sz,swp)
#endif
// Private typedef -----------------------------------------------------------
// Private variables ---------------------------------------------------------
extern I2C_HandleTypeDef hi2c1;
extern I2C_HandleTypeDef hi2c2;
extern RTC_HandleTypeDef hrtc;
extern TIM_HandleTypeDef htim1;
extern TIM_HandleTypeDef htim2;
extern TIM_HandleTypeDef htim3;
#ifdef DEBUG
extern UART_HandleTypeDef huart1;
static const uint8_t hexmap[] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'};
#endif
#ifdef UART_PICO_INTERFACE
extern UART_HandleTypeDef huart3;
#endif
volatile uint32_t systicks_counter = 0; // 1 MHz systick counter
static uint32_t pmu_check_counter = 0;
static uint8_t keycb_start = 0;
static uint32_t head_phone_status = 0; // TODO: Combine status registers
volatile uint8_t stop_mode_active = 0;
volatile uint8_t pmu_irq = 0;
static uint32_t pmu_online = 0;
// Private variables ---------------------------------------------------------
//static void lock_cb(uint8_t caps_changed, uint8_t num_changed);
static void key_cb(char key, enum key_state state);
static void hw_check_HP_presence(void);
static void sync_bat(void);
#ifdef DEBUG
static void printPMU(void);
#endif
static void check_pmu_int(void);
static void sys_prepare_sleep(void);
static void sys_wake_sleep(void);
extern void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
if (htim == &htim2) {
systicks_counter += 1;
}
}
#ifdef DEBUG
void uart_rawdata_write(uint32_t c, size_t s, uint8_t swap) {
uint8_t r[4];
uint32_t v = swap ? __REV(c) : c;
HAL_UART_Transmit(&huart1, (uint8_t*)"0x", 2, 40);
for (size_t i = 0; i < s; i++) {
uint8_t index = swap ? (uint8_t)(4-s+i) : (uint8_t)i;
r[0] = hexmap[(((uint8_t*)&v)[index] & 0xF0) >> 4];
r[1] = hexmap[((uint8_t*)&v)[index] & 0x0F];
HAL_UART_Transmit(&huart1, r, 2, 40);
}
}
#endif
/**
* @brief The application entry point.
* @retval int
*/
int main(void) {
uint32_t result = 0;
// Initialize the STM32 HAL system
result = HAL_Interface_init();
if (result != HAL_OK)
Error_Handler();
// Start the systick timer
if (HAL_TIM_Base_Start_IT(&htim2) != HAL_OK)
Error_Handler();
LL_GPIO_ResetOutputPin(SYS_LED_GPIO_Port, SYS_LED_Pin); // I'm alive!
// EEPROM emulation init
if (EEPROM_Init() != EEPROM_SUCCESS)
Error_Handler();
#ifdef DEBUG
DEBUG_UART_MSG("EEPROM init\n\r");
#endif
// Check EEPROM first run
EEPROM_ReadVariable(EEPROM_VAR_ID, (EEPROM_Value*)&result);
if ((uint16_t)result != 0xCA1C) {
EEPROM_WriteVariable(EEPROM_VAR_BCKL, (EEPROM_Value)(uint16_t)((DEFAULT_LCD_BL << 8) | DEFAULT_KBD_BL), EEPROM_SIZE16);
EEPROM_WriteVariable(EEPROM_VAR_KBD, (EEPROM_Value)(uint32_t)((DEFAULT_KBD_DEB << 16) | DEFAULT_KBD_FREQ), EEPROM_SIZE32);
EEPROM_WriteVariable(EEPROM_VAR_CFG, (EEPROM_Value)(uint16_t)(((CFG_USE_MODS | CFG_REPORT_MODS) << 8) | (INT_OVERFLOW | INT_KEY)), EEPROM_SIZE16);
EEPROM_WriteVariable(EEPROM_VAR_ID, (EEPROM_Value)(uint16_t)0xCA1C, EEPROM_SIZE16);
#ifdef DEBUG
DEBUG_UART_MSG("EEPROM first start!\n\r");
#endif
}
// Check RTC SRAM first run
if (HAL_RTCEx_BKUPRead(&hrtc, RTC_BKP_DR1) == 0) {
HAL_RTCEx_BKUPWrite(&hrtc, RTC_BKP_DR1, 0xCA1C);
HAL_RTCEx_BKUPWrite(&hrtc, RTC_BKP_DR2, ((rtc_alarm_time.raw & 0xFF) << 8) | DEFAULT_RCT_CFG);
HAL_RTCEx_BKUPWrite(&hrtc, RTC_BKP_DR3, rtc_alarm_time.raw >> 16);
HAL_RTCEx_BKUPWrite(&hrtc, RTC_BKP_DR4, rtc_alarm_date.raw & 0xFFFF);
HAL_RTCEx_BKUPWrite(&hrtc, RTC_BKP_DR5, rtc_alarm_date.raw >> 16);
}
// I2C-Pico interface registers
reg_init();
HAL_Delay(10);
if (HAL_I2C_EnableListen_IT(&hi2c1) != HAL_OK)
Error_Handler();
// Check for AXP2101 is accessible on secondary I2C bus
result = 0;
HAL_I2C_Mem_Read(&hi2c2, 0x68, XPOWERS_AXP2101_IC_TYPE, 1, (uint8_t*)&result, 1, 60);
if (result == XPOWERS_AXP2101_CHIP_ID) {
#ifdef DEBUG
DEBUG_UART_MSG("PMU ID: ");
DEBUG_UART_MSG2((uint32_t)result, 1, 0);
DEBUG_UART_MSG("\n\r");
#endif
pmu_online = 1;
}
#ifdef DEBUG
else {
DEBUG_UART_MSG("PMU not online!\n\r");
}
#endif
// Start LCD and KBD backlight PWM
lcd_backlight_off();
if (HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1) != HAL_OK)
Error_Handler();
kbd_backlight_on();
if (HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_3) != HAL_OK)
Error_Handler();
#ifdef DEBUG
DEBUG_UART_MSG("Bckl params: ");
DEBUG_UART_MSG2(((uint32_t)result >> 8), 1, 1);
DEBUG_UART_MSG(", ");
DEBUG_UART_MSG2(((uint32_t)result & 0xFF), 1, 1);
DEBUG_UART_MSG("\n\r");
#endif
keyboard_set_key_callback(key_cb);
// Enable PICO power
LL_GPIO_SetOutputPin(PICO_EN_GPIO_Port, PICO_EN_Pin);
#ifdef DEBUG
DEBUG_UART_MSG("Pico started\n\r");
#endif
// Enable speaker Amp. power
LL_GPIO_SetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
HAL_Delay(500);
lcd_backlight_on();
// It is necessary to disable the detection function of the TS pin on the
// board without the battery temperature detection function, otherwise it will
// cause abnormal charging
AXP2101_setSysPowerDownVoltage(2800);
AXP2101_disableTSPinMeasure();
// AXP2101_enableTemperatureMeasure();
AXP2101_enableBattDetection();
AXP2101_enableVbusVoltageMeasure();
AXP2101_enableBattVoltageMeasure();
AXP2101_enableSystemVoltageMeasure();
AXP2101_setChargingLedMode(XPOWERS_CHG_LED_CTRL_CHG);
AXP2101_disableIRQ(XPOWERS_AXP2101_ALL_IRQ);
AXP2101_clearIrqStatus();
AXP2101_enableIRQ(XPOWERS_AXP2101_BAT_INSERT_IRQ |
XPOWERS_AXP2101_BAT_REMOVE_IRQ | // BATTERY
XPOWERS_AXP2101_WARNING_LEVEL1_IRQ |
XPOWERS_AXP2101_VBUS_INSERT_IRQ |
XPOWERS_AXP2101_VBUS_REMOVE_IRQ | // VBUS
XPOWERS_AXP2101_PKEY_SHORT_IRQ |
XPOWERS_AXP2101_PKEY_LONG_IRQ | // POWER KEY
XPOWERS_AXP2101_BAT_CHG_DONE_IRQ |
XPOWERS_AXP2101_BAT_CHG_START_IRQ // CHARGE
);
// setLowBatWarnThreshold Range: 5% ~ 20%
// The following data is obtained from actual testing , Please see the description below for the test method.
// 20% ~= 3.7v
// 15% ~= 3.6v
// 10% ~= 3.55V
// 5% ~= 3.5V
// 1% ~= 3.4V
AXP2101_setLowBatWarnThreshold(20); // Set to trigger interrupt when reaching 20%
// setLowBatShutdownThreshold Range: 0% ~ 15%
// The following data is obtained from actual testing , Please see the description below for the test method.
// 15% ~= 3.6v
// 10% ~= 3.55V
// 5% ~= 3.5V
// 1% ~= 3.4V
AXP2101_setLowBatShutdownThreshold(5); //This is related to the battery charging and discharging logic. If you're not sure what you're doing, please don't modify it, as it could damage the battery.
keycb_start = 1;
sync_bat();
low_bat();
while (1) {
//#ifndef DEBUG
// LL_IWDG_ReloadCounter(IWDG);
//#endif
// Re-arm I2CS in case of lost master signal
if (i2cs_state != I2CS_STATE_IDLE && ((uptime_ms() - i2cs_rearm_counter) > I2CS_REARM_TIMEOUT))
i2cs_state = I2CS_STATE_IDLE;
reg_sync();
check_pmu_int();
keyboard_process();
hw_check_HP_presence();
// Check RTC new events to process
if (rtc_reg_xor_events != 0) {
if ((rtc_reg_xor_events & RTC_CFG_RUN_ALARM) == RTC_CFG_RUN_ALARM) {
if (reg_get_value(REG_ID_RTC_CFG) & RTC_CFG_RUN_ALARM) {
if (rtc_run_alarm() != HAL_OK)
reg_set_value(REG_ID_RTC_CFG, reg_get_value(REG_ID_RTC_CFG) & (uint8_t)~RTC_CFG_RUN_ALARM);
} else {
if (rtc_stop_alarm() != HAL_OK)
reg_set_value(REG_ID_RTC_CFG, reg_get_value(REG_ID_RTC_CFG) | RTC_CFG_RUN_ALARM);
}
rtc_reg_xor_events &= (uint8_t)~RTC_CFG_RUN_ALARM;
}
}
// Check internal status
switch (reg_get_value(REG_ID_PWR_CTRL)) {
case 1:
reg_set_value(REG_ID_PWR_CTRL, 0);
HAL_Delay(200); // Wait for final I2C answer
if (HAL_I2C_DisableListen_IT(&hi2c1) != HAL_OK)
Error_Handler();
LL_GPIO_ResetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
LL_GPIO_ResetOutputPin(PICO_EN_GPIO_Port, PICO_EN_Pin);
HAL_Delay(200); // No need to use keyboard, so a simple delay should suffice
LL_GPIO_SetOutputPin(PICO_EN_GPIO_Port, PICO_EN_Pin);
LL_GPIO_SetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
if (HAL_I2C_EnableListen_IT(&hi2c1) != HAL_OK)
Error_Handler();
break;
case 2:
reg_set_value(REG_ID_PWR_CTRL, 0);
HAL_Delay(200); // Wait for final I2C answer
if (HAL_I2C_DisableListen_IT(&hi2c1) != HAL_OK)
Error_Handler();
LL_GPIO_ResetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
LL_GPIO_ResetOutputPin(PICO_EN_GPIO_Port, PICO_EN_Pin);
NVIC_SystemReset();
break;
//case 3:
case 4:
reg_set_value(REG_ID_PWR_CTRL, 0);
LL_GPIO_ResetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
LL_GPIO_ResetOutputPin(PICO_EN_GPIO_Port, PICO_EN_Pin);
AXP2101_setChargingLedMode(XPOWERS_CHG_LED_CTRL_CHG);
stop_mode_active = 1;
break;
case 5:
reg_set_value(REG_ID_PWR_CTRL, 0);
LL_GPIO_ResetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
LL_GPIO_ResetOutputPin(PICO_EN_GPIO_Port, PICO_EN_Pin);
AXP2101_setChargingLedMode(XPOWERS_CHG_LED_CTRL_CHG);
AXP2101_shutdown(); // Full shudown will rip the RTC configuration! Need to be reset at next reboot.
break;
default:
break;
}
if (stop_mode_active == 1) {
/* Prepare peripherals to the low-power mode */
sys_prepare_sleep();
/* Low-power mode entry */
//HAL_WWDG_Disable();
HAL_SuspendTick();
HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI);
SystemClock_Config();
HAL_ResumeTick();
LL_GPIO_ResetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
LL_GPIO_ResetOutputPin(PICO_EN_GPIO_Port, PICO_EN_Pin);
HAL_Delay(500);
/* Wake-up peripherals from low-power mode */
sys_wake_sleep();
}
}
}
/*
static void lock_cb(uint8_t caps_changed, uint8_t num_changed) {
uint8_t int_trig = 0;
if (caps_changed && reg_is_bit_set(REG_ID_CFG, CFG_CAPSLOCK_INT)) {
reg_set_bit(REG_ID_INT, INT_CAPSLOCK);
int_trig = 1;
}
if (num_changed && reg_is_bit_set(REG_ID_CFG, CFG_NUMLOCK_INT)) {
reg_set_bit(REG_ID_INT, INT_NUMLOCK);
int_trig = 1;
}
#ifndef UART_PICO_INTERFACE
if (int_trig == 1)
LL_GPIO_ResetOutputPin(PICO_IRQ_GPIO_Port, PICO_IRQ_Pin); // Assert the IRQ signal to the pico
#endif
}
*/
static void key_cb(char key, enum key_state state) {
uint8_t int_trig = 0;
if (keycb_start == 0) {
fifo_flush();
return;
}
if (reg_is_bit_set(REG_ID_INT_CFG, INT_KEY)) {
reg_set_bit(REG_ID_INT, INT_KEY);
int_trig = 1;
}
#ifdef DEBUG
DEBUG_UART_MSG("key: ");
DEBUG_UART_MSG2(key, 1, 0);
DEBUG_UART_MSG("\n\r");
DEBUG_UART_MSG("state: ");
DEBUG_UART_MSG2(state, 1, 0);
//DEBUG_UART_MSG(" blk: ");
//DEBUG_UART_MSG2(reg_get_value(REG_ID_BKL), 1, 0);
DEBUG_UART_MSG("\n\r");
#endif
const struct fifo_item item = {key, state};
if (!fifo_enqueue(item)) {
if (reg_is_bit_set(REG_ID_INT_CFG, INT_OVERFLOW)) {
reg_set_bit(REG_ID_INT, INT_OVERFLOW); // INT_OVERFLOW The interrupt was generated by FIFO overflow.
int_trig = 1;
}
if (reg_is_bit_set(REG_ID_SYS_CFG, CFG_OVERFLOW_ON)) fifo_enqueue_force(item);
}
#ifndef UART_PICO_INTERFACE
if (int_trig == 1)
LL_GPIO_ResetOutputPin(PICO_IRQ_GPIO_Port, PICO_IRQ_Pin); // Assert the IRQ signal to the pico
#endif
}
__STATIC_INLINE void hw_check_HP_presence(void) {
uint32_t v = LL_GPIO_IsInputPinSet(HP_DET_GPIO_Port, HP_DET_Pin);
if (v != head_phone_status) {
if (v != 0) {
#ifdef DEBUG
DEBUG_UART_MSG("HeadPhone inserted\n\r");
#endif
LL_GPIO_ResetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
} else {
#ifdef DEBUG
DEBUG_UART_MSG("HeadPhone removed\n\r");
#endif
LL_GPIO_SetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
}
head_phone_status = v;
}
}
__STATIC_INLINE void sync_bat(void) {
uint8_t pcnt;
if (AXP2101_getBatteryPercent(&pcnt) != HAL_OK)
return;
#ifdef DEBUG
DEBUG_UART_MSG("check_pmu_int: ");
DEBUG_UART_MSG2((uint32_t)pcnt, 1, 0);
DEBUG_UART_MSG("\n\r");
#endif
if (pcnt > 100) { // disconnect
pcnt = 0;
} else { // battery connected
if (AXP2101_isCharging())
pcnt |= (1 << 7);
low_bat();
}
reg_set_value(REG_ID_BAT, pcnt);
}
#ifdef DEBUG
__STATIC_INLINE void printPMU(void) {
DEBUG_UART_MSG("PMU isCharging: ");
if (AXP2101_isCharging())
DEBUG_UART_MSG("YES\n\r");
else
DEBUG_UART_MSG( "NO\n\r");
DEBUG_UART_MSG("PMU isDischarge: ");
if (AXP2101_isDischarge())
DEBUG_UART_MSG("YES\n\r");
else
DEBUG_UART_MSG( "NO\n\r");
DEBUG_UART_MSG("PMU isStandby: ");
if (AXP2101_isStandby())
DEBUG_UART_MSG("YES\n\r");
else
DEBUG_UART_MSG( "NO\n\r");
DEBUG_UART_MSG("PMU isVbusIn: ");
if (AXP2101_isVbusIn())
DEBUG_UART_MSG("YES\n\r");
else
DEBUG_UART_MSG( "NO\n\r");
DEBUG_UART_MSG("PMU isVbusGood: ");
if (AXP2101_isVbusGood())
DEBUG_UART_MSG("YES\n\r");
else
DEBUG_UART_MSG( "NO\n\r");
DEBUG_UART_MSG("PMU getChargerStatus: ");
uint8_t charge_status = AXP2101_getChargerStatus();
if (charge_status == XPOWERS_AXP2101_CHG_TRI_STATE) {
DEBUG_UART_MSG("tri_charge");
} else if (charge_status == XPOWERS_AXP2101_CHG_PRE_STATE) {
DEBUG_UART_MSG("pre_charge");
} else if (charge_status == XPOWERS_AXP2101_CHG_CC_STATE) {
DEBUG_UART_MSG("constant charge");
} else if (charge_status == XPOWERS_AXP2101_CHG_CV_STATE) {
DEBUG_UART_MSG("constant voltage");
} else if (charge_status == XPOWERS_AXP2101_CHG_DONE_STATE) {
DEBUG_UART_MSG("charge done");
} else if (charge_status == XPOWERS_AXP2101_CHG_STOP_STATE) {
DEBUG_UART_MSG("not charging");
}
DEBUG_UART_MSG("PMU getBattVoltage: ");
DEBUG_UART_MSG2(AXP2101_getBattVoltage(), 2, 0);
DEBUG_UART_MSG("mV\n\r");
DEBUG_UART_MSG("PMU getVbusVoltage: ");
DEBUG_UART_MSG2(AXP2101_getVbusVoltage(), 2, 0);
DEBUG_UART_MSG("mV\n\r");
DEBUG_UART_MSG("PMU getSystemVoltage: ");
DEBUG_UART_MSG2(AXP2101_getSystemVoltage(), 2, 0);
DEBUG_UART_MSG("mV\n\r");
// The battery percentage may be inaccurate at first use, the PMU will
// automatically learn the battery curve and will automatically calibrate the
// battery percentage after a charge and discharge cycle
if (AXP2101_isBatteryConnect()) {
DEBUG_UART_MSG("PMU getBatteryPercent: ");
uint8_t pcnt = 0;
AXP2101_getBatteryPercent(&pcnt);
DEBUG_UART_MSG2(pcnt, 1, 0);
DEBUG_UART_MSG("%\n\r");
}
}
#endif
__STATIC_INLINE void check_pmu_int(void) {
if (!pmu_online)
return;
uint8_t pcnt;
if (uptime_ms() - pmu_check_counter > 20000) {
pmu_check_counter = uptime_ms(); // reset time
AXP2101_getBatteryPercent(&pcnt);
#ifdef DEBUG
DEBUG_UART_MSG("check_pmu_int: ");
DEBUG_UART_MSG2((uint32_t)pcnt, 1, 0);
DEBUG_UART_MSG("\n\r");
#endif
if (pcnt > 100) { // disconnect
pcnt = 0;
} else { // battery connected
if (AXP2101_isCharging())
pcnt |= (1 << 7);
low_bat();
}
reg_set_value(REG_ID_BAT,pcnt);
}
if (pmu_irq) {
pmu_irq = 0; // Reset interrupt flag
// Get PMU Interrupt Status Register
uint32_t status;
AXP2101_getIrqStatus(&status);
#ifdef DEBUG
DEBUG_UART_MSG("PMU IRQ status: ");
DEBUG_UART_MSG2(status, 4, 1);
DEBUG_UART_MSG("\n\r");
#endif
/*
// When the set low-voltage battery percentage warning threshold is reached,
// set the threshold through getLowBatWarnThreshold( 5% ~ 20% )
if (PMU.isDropWarningLevel2Irq()) {
Serial1.println("isDropWarningLevel2");
//report_bat();
}
*/
// When the set low-voltage battery percentage shutdown threshold is reached
// set the threshold through setLowBatShutdownThreshold()
//This is related to the battery charging and discharging logic. If you're not sure what you're doing, please don't modify it, as it could damage the battery.
if (AXP2101_isDropWarningLevel1Irq()) {
#ifdef DEBUG
DEBUG_UART_MSG("PMU: isDropWarningLevel1\n\r");
#endif
//report_bat();
//
AXP2101_shutdown();
}
/*if (PMU.isGaugeWdtTimeoutIrq()) {
Serial1.println("isWdtTimeout");
}
if (PMU.isBatChargerOverTemperatureIrq()) {
Serial1.println("isBatChargeOverTemperature");
}
if (PMU.isBatWorkOverTemperatureIrq()) {
Serial1.println("isBatWorkOverTemperature");
}
if (PMU.isBatWorkUnderTemperatureIrq()) {
Serial1.println("isBatWorkUnderTemperature");
}
if (PMU.isVbusInsertIrq()) {
Serial1.println("isVbusInsert");
}*/
if (AXP2101_isVbusRemoveIrq()) {
#ifdef DEBUG
DEBUG_UART_MSG("PMU: isVbusRemove\n\r");
#endif
stop_chg();
}
if (AXP2101_isBatInsertIrq()) {
AXP2101_getBatteryPercent(&pcnt);
if (pcnt > 100) { // disconnect
pcnt = 0;
} else { // battery connected
pcnt |= (1 << 7);
}
reg_set_value(REG_ID_BAT, pcnt);
#ifdef DEBUG
DEBUG_UART_MSG("PMU: isBatInsert\n\r");
#endif
}
if (AXP2101_isBatRemoveIrq()) {
reg_set_value(REG_ID_BAT,0);
#ifdef DEBUG
DEBUG_UART_MSG("PMU: isBatRemove\n\r");
#endif
stop_chg();
}
if (AXP2101_isPkeyShortPressIrq()) {
#ifdef DEBUG
DEBUG_UART_MSG("PMU: isPekeyShortPress\n\r");
uint8_t data[4] = {0};
AXP2101_readDataBuffer(data, XPOWERS_AXP2101_DATA_BUFFER_SIZE);
DEBUG_UART_MSG("PMU data buffer:\n\r");
DEBUG_UART_MSG2(data[0], 1, 0);
DEBUG_UART_MSG("\n\r");
DEBUG_UART_MSG2(data[1], 1, 0);
DEBUG_UART_MSG("\n\r");
DEBUG_UART_MSG2(data[2], 1, 0);
DEBUG_UART_MSG("\n\r");
DEBUG_UART_MSG2(data[3], 1, 0);
DEBUG_UART_MSG("\n\r");
printPMU();
#endif
if (stop_mode_active == 1) {
stop_mode_active = 0;
LL_GPIO_SetOutputPin(PICO_EN_GPIO_Port, PICO_EN_Pin);
LL_GPIO_SetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
} else {
// enterPmuSleep(); //TODO: replace by pico reset if Shift key is pressed
}
}
if (AXP2101_isPkeyLongPressIrq()) {
#ifdef DEBUG
DEBUG_UART_MSG("PMU: isPekeyLongPress\n\r");
#endif
//Serial1.println("write pmu data buffer .");
//uint8_t data[4] = {1, 2, 3, 4};
//PMU.writeDataBuffer(data, XPOWERS_AXP2101_DATA_BUFFER_SIZE);
if (stop_mode_active == 1) {
stop_mode_active = 0;
LL_GPIO_SetOutputPin(PICO_EN_GPIO_Port, PICO_EN_Pin);
LL_GPIO_SetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
} else {
LL_GPIO_ResetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
LL_GPIO_ResetOutputPin(PICO_EN_GPIO_Port, PICO_EN_Pin);
AXP2101_setChargingLedMode(XPOWERS_CHG_LED_CTRL_CHG);
stop_mode_active = 1;
}
}
/*if (PMU.isPekeyNegativeIrq()) {
Serial1.println("isPekeyNegative");
}
if (PMU.isPekeyPositiveIrq()) {
Serial1.println("isPekeyPositive");
}
if (PMU.isLdoOverCurrentIrq()) {
Serial1.println("isLdoOverCurrentIrq");
}
if (PMU.isBatfetOverCurrentIrq()) {
Serial1.println("isBatfetOverCurrentIrq");
}*/
if (AXP2101_isBatChargeDoneIrq()) {
AXP2101_getBatteryPercent(&pcnt);
if (pcnt > 100) { // disconnect
pcnt = 0;
} else { // battery connected
pcnt |= (1 << 7);
}
reg_set_value(REG_ID_BAT,pcnt);
#ifdef DEBUG
DEBUG_UART_MSG("PMU: isBatChagerDone\n\r");
#endif
stop_chg();
}
if (AXP2101_isBatChargeStartIrq()) {
AXP2101_getBatteryPercent(&pcnt);
if (pcnt > 100) { // disconnect
pcnt = 0;
} else { // battery connected
pcnt |= (1 << 7);
}
reg_set_value(REG_ID_BAT,pcnt);
#ifdef DEBUG
DEBUG_UART_MSG("PMU: isBatChagerStart\n\r");
#endif
if(AXP2101_isBatteryConnect())
start_chg();
}
/*if (PMU.isBatDieOverTemperatureIrq()) {
Serial1.println("isBatDieOverTemperature");
}
if (PMU.isChagerOverTimeoutIrq()) {
Serial1.println("isChagerOverTimeout");
}
if (PMU.isBatOverVoltageIrq()) {
Serial1.println("isBatOverVoltage");
}*/
// Clear PMU Interrupt Status Register
AXP2101_clearIrqStatus();
}
}
__STATIC_INLINE void sys_prepare_sleep(void) {
LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
AXP2101_disableIRQ(XPOWERS_AXP2101_ALL_IRQ);
AXP2101_clearIrqStatus();
AXP2101_enableIRQ(XPOWERS_AXP2101_PKEY_SHORT_IRQ |
XPOWERS_AXP2101_PKEY_LONG_IRQ |
XPOWERS_AXP2101_WARNING_LEVEL1_IRQ
);
lcd_backlight_off();
kbd_backlight_off();
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_1);
HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_3);
GPIO_InitStruct.Pin = SYS_LED_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
LL_GPIO_Init(SYS_LED_GPIO_Port, &GPIO_InitStruct);
LL_GPIO_SetOutputPin(SYS_LED_GPIO_Port, SYS_LED_Pin);
}
__STATIC_INLINE void sys_wake_sleep(void) {
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = SYS_LED_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_MEDIUM;
HAL_GPIO_Init(SYS_LED_GPIO_Port, &GPIO_InitStruct);
LL_GPIO_ResetOutputPin(SYS_LED_GPIO_Port, SYS_LED_Pin);
LL_GPIO_ResetOutputPin(SYS_LED_GPIO_Port, SYS_LED_Pin);
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_3);
HAL_Delay(300);
kbd_backlight_on();
lcd_backlight_on();
AXP2101_enableIRQ(XPOWERS_AXP2101_BAT_INSERT_IRQ |
XPOWERS_AXP2101_BAT_REMOVE_IRQ | // BATTERY
XPOWERS_AXP2101_VBUS_INSERT_IRQ |
XPOWERS_AXP2101_VBUS_REMOVE_IRQ | // VBUS
XPOWERS_AXP2101_PKEY_SHORT_IRQ |
XPOWERS_AXP2101_PKEY_LONG_IRQ | // POWER KEY
XPOWERS_AXP2101_BAT_CHG_DONE_IRQ |
XPOWERS_AXP2101_BAT_CHG_START_IRQ // CHARGE
);
}