JackCarterSmith 1b288f72cc
Some fix
- Missalign PMIC IRQ flag
- Incorrect batt led
2025-05-05 21:36:42 +02:00

1309 lines
36 KiB
C

/* USER CODE BEGIN Header */
/**
******************************************************************************
*
* Copyright (c) 2025 C.ARE (JackCarterSmith).
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
*
******************************************************************************
*
* SYS_LED and COL_x are open-drain, output logic is inverted.
*
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "axp2101.h"
#include "backlight.h"
#include "batt.h"
#include "eeprom.h"
#include "fifo.h"
#include "keyboard.h"
#include "regs.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
enum i2cs_state {
//I2CS_STATE_HALT,
I2CS_STATE_IDLE,
I2CS_STATE_REG_REQUEST,
I2CS_STATE_REG_ANSWER
};
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
//#define DEFAULT_LCD_BL (205) // ~40% PWM@7.81kHz (9 bits resolution)
//#define DEFAULT_KBD_BL (20) // ~4% PWM@7.81kHz (9 bits resolution)
#define DEFAULT_LCD_BL (3) //step-4 (~50%)
#define DEFAULT_KBD_BL (0) //step-1 (0%)
#define I2CS_REARM_TIMEOUT 500
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
#ifdef DEBUG
#define DEBUG_UART_MSG(msg) HAL_UART_Transmit(&huart1, (uint8_t*)msg, sizeof(msg)-1, 1000)
//#define DEBUG_UART_MSG2(d,s) HAL_UART_Transmit(&huart1, (uint8_t*)d, s, 200)
#define DEBUG_UART_MSG2(d,sz, swp) uart_rawdata_write(d,sz,swp)
#endif
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;
I2C_HandleTypeDef hi2c2;
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3;
UART_HandleTypeDef huart1;
UART_HandleTypeDef huart3;
/* USER CODE BEGIN PV */
volatile uint32_t systicks_counter = 0; // 1 MHz systick counter - TODO: implement overflow self-reset mechanism
volatile uint32_t pmu_check_counter = 0;
volatile uint32_t i2cs_rearm_counter = 0;
#ifdef DEBUG
static const uint8_t hexmap[] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'};
#endif
static uint8_t i2cs_r_buff[2];
static volatile uint8_t i2cs_r_idx = 0;
static uint8_t i2cs_w_buff[31 + 1]; // The last one must be only a 0 value
static volatile uint8_t i2cs_w_idx = 0;
static volatile uint8_t i2cs_w_len = 0;
static enum i2cs_state i2cs_state = I2CS_STATE_IDLE;
static uint8_t keycb_start = 0;
static uint32_t head_phone_status = 0;
volatile uint8_t pmu_irq = 0;
static uint32_t pmu_online = 0;
uint8_t io_matrix[9] = {0}; //for IO matrix,last byte is the restore key(c64 only)
uint8_t js_bits = 0xFF; // c64 joystick bits
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_I2C1_Init(void);
static void MX_I2C2_Init(void);
static void MX_RTC_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_USART3_UART_Init(void);
static void MX_IWDG_Init(void);
static void MX_TIM1_Init(void);
static void MX_TIM3_Init(void);
static void MX_TIM2_Init(void);
/* USER CODE BEGIN PFP */
//static void lock_cb(uint8_t caps_changed, uint8_t num_changed);
static void key_cb(char key, enum key_state state);
static void hw_check_HP_presence(void);
static void sync_bat(void);
static void check_pmu_int(void);
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
extern void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
if (htim == &htim2) {
systicks_counter += 1;
i2cs_rearm_counter += 1;
}
}
extern void HAL_I2C_AddrCallback(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode) {
if (hi2c == &hi2c1) {
// I2C slave addr match error detection
if (AddrMatchCode != 0x3E) // 0x1F << 1
return;
if (TransferDirection == I2C_DIRECTION_TRANSMIT) {
if (i2cs_state == I2CS_STATE_IDLE) {
i2cs_state = I2CS_STATE_REG_REQUEST;
i2cs_r_idx = 0;
HAL_I2C_Slave_Sequential_Receive_IT(hi2c, i2cs_r_buff, 1, I2C_FIRST_FRAME); // This write the first received byte to i2cs_r_buff[0]
i2cs_rearm_counter = 0;
}
}
if (TransferDirection == I2C_DIRECTION_RECEIVE) {
if (i2cs_state == I2CS_STATE_REG_REQUEST) {
const uint8_t is_write = (uint8_t)(i2cs_r_buff[0] & (1 << 7));
const uint8_t reg = (uint8_t)(i2cs_r_buff[0] & ~(1 << 7));
i2cs_w_buff[0] = reg;
i2cs_w_len = 2;
if (reg == REG_ID_BKL) { // We wait an another byte for these registers
if (is_write)
lcd_backlight_update(i2cs_r_buff[1]);
i2cs_w_buff[1] = reg_get_value(REG_ID_BKL);
} else if (reg == REG_ID_BK2) {
if (is_write)
kbd_backlight_update(i2cs_r_buff[1]);
i2cs_w_buff[1] = reg_get_value(REG_ID_BK2);
} else if (reg == REG_ID_FIF) {
struct fifo_item item = {0};
fifo_dequeue(&item);
i2cs_w_buff[0] = item.state;
i2cs_w_buff[1] = item.key;
} else if (reg == REG_ID_BAT) {
i2cs_w_buff[1] = reg_get_value(REG_ID_BAT);
} else if (reg == REG_ID_KEY) {
i2cs_w_buff[0] = fifo_count();
i2cs_w_buff[0] |= keyboard_get_numlock() ? KEY_NUMLOCK : 0x00;
i2cs_w_buff[0] |= keyboard_get_capslock() ? KEY_CAPSLOCK : 0x00;
} else if (reg == REG_ID_C64_MTX) {
//memcpy(write_buffer + 1, io_matrix, sizeof(io_matrix));
*((uint32_t*)(&i2cs_w_buff[1]) + 0) = *((uint32_t*)(io_matrix) + 0);
*((uint32_t*)(&i2cs_w_buff[1]) + 1) = *((uint32_t*)(io_matrix) + 1);
i2cs_w_buff[9] = io_matrix[8];
i2cs_w_len = 10;
} else if (reg == REG_ID_C64_JS) {
i2cs_w_buff[1] = js_bits;
} else {
i2cs_w_buff[0] = 0;
i2cs_w_buff[1] = 0;
}
i2cs_state = I2CS_STATE_REG_ANSWER;
i2cs_w_idx = 0;
HAL_I2C_Slave_Sequential_Transmit_IT(hi2c, i2cs_w_buff, i2cs_w_len, I2C_FIRST_AND_LAST_FRAME);
i2cs_rearm_counter = 0;
}
}
}
}
extern void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *hi2c) {
if (hi2c == &hi2c1) {
i2cs_r_idx++;
if (i2cs_state == I2CS_STATE_REG_REQUEST) {
const uint8_t is_write = (uint8_t)(i2cs_r_buff[0] & (1 << 7));
const uint8_t reg = (uint8_t)(i2cs_r_buff[0] & ~(1 << 7));
// We wait an another byte for these registers
if (reg == REG_ID_BKL ||
reg == REG_ID_BK2) {
if (is_write) {
HAL_I2C_Slave_Sequential_Receive_IT(hi2c, i2cs_r_buff + i2cs_r_idx, 1, I2C_NEXT_FRAME); // This write the second received byte to i2cs_r_buff[1]
}
}
}
}
}
extern void HAL_I2C_ListenCpltCallback (I2C_HandleTypeDef *hi2c) {
if (hi2c == &hi2c1) {
if (i2cs_state == I2CS_STATE_REG_ANSWER)
i2cs_state = I2CS_STATE_IDLE;
HAL_I2C_EnableListen_IT(hi2c);
}
}
extern void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c) {
if (hi2c == &hi2c1)
if (HAL_I2C_GetError(hi2c) != HAL_I2C_ERROR_AF)
Error_Handler(); //TODO: replace with dedicated, non-blocking, error handler
// Actually this will trigger the watchdog and restart the system... That can ruin the day of the user.
}
#ifdef DEBUG
void uart_rawdata_write(uint32_t c, size_t s, uint8_t swap) {
uint8_t r[4];
uint32_t v = swap ? __REV(c) : c;
HAL_UART_Transmit(&huart1, (uint8_t*)"0x", 2, 40);
for (size_t i = 0; i < s; i++) {
uint8_t index = swap ? (uint8_t)(4-s+i) : (uint8_t)i;
r[0] = hexmap[(((uint8_t*)&v)[index] & 0xF0) >> 4];
r[1] = hexmap[((uint8_t*)&v)[index] & 0x0F];
HAL_UART_Transmit(&huart1, r, 2, 40);
}
}
#endif
void flash_one_time(uint32_t ts, uint8_t restore_status) {
for (size_t i = 0; i < ts; i++) {
LL_IWDG_ReloadCounter(IWDG);
LL_GPIO_ResetOutputPin(SYS_LED_GPIO_Port, SYS_LED_Pin);
HAL_Delay(400);
LL_GPIO_SetOutputPin(SYS_LED_GPIO_Port, SYS_LED_Pin);
HAL_Delay(200);
}
if (restore_status)
LL_GPIO_ResetOutputPin(SYS_LED_GPIO_Port, SYS_LED_Pin);
else
LL_GPIO_SetOutputPin(SYS_LED_GPIO_Port, SYS_LED_Pin);
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
int32_t result = 0;
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_I2C1_Init();
MX_I2C2_Init();
MX_RTC_Init();
MX_USART1_UART_Init();
MX_USART3_UART_Init();
MX_IWDG_Init();
MX_TIM1_Init();
MX_TIM3_Init();
MX_TIM2_Init();
/* USER CODE BEGIN 2 */
LL_GPIO_ResetOutputPin(SYS_LED_GPIO_Port, SYS_LED_Pin); // I'm alive!
// Start the systick timer
if (HAL_TIM_Base_Start_IT(&htim2) != HAL_OK)
Error_Handler();
// EEPROM emulation init
if (EEPROM_Init() != EEPROM_SUCCESS)
Error_Handler();
#ifdef DEBUG
DEBUG_UART_MSG("EEPROM init\n\r");
#endif
// Check EEPROM first run
EEPROM_ReadVariable(EEPROM_VAR_ID, (EEPROM_Value*)&result);
if ((uint16_t)result != 0xCA1C) {
EEPROM_WriteVariable(EEPROM_VAR_BCKL, (EEPROM_Value)(uint16_t)((DEFAULT_LCD_BL << 8) | DEFAULT_KBD_BL), EEPROM_SIZE16);
EEPROM_WriteVariable(EEPROM_VAR_KBD, (EEPROM_Value)(uint16_t)((10 << 8) | 5), EEPROM_SIZE16);
EEPROM_WriteVariable(EEPROM_VAR_CFG, (EEPROM_Value)(uint16_t)(CFG_OVERFLOW_INT | CFG_KEY_INT | CFG_USE_MODS | CFG_REPORT_MODS), EEPROM_SIZE16);
EEPROM_WriteVariable(EEPROM_VAR_ID, (EEPROM_Value)(uint16_t)0xCA1C, EEPROM_SIZE16);
#ifdef DEBUG
DEBUG_UART_MSG("EEPROM first start!\n\r");
#endif
}
// I2C-Pico interface registers
reg_init();
if (HAL_I2C_EnableListen_IT(&hi2c1) != HAL_OK)
Error_Handler();
HAL_Delay(10);
// Check for AXP2101 is accessible on secondary I2C bus
//result = HAL_I2C_IsDeviceReady(&hi2c2, 0x68, 3, 40);
//if (result == HAL_OK) {
result = 0;
HAL_I2C_Mem_Read(&hi2c2, 0x68, XPOWERS_AXP2101_IC_TYPE, 1, (uint8_t*)&result, 1, 60);
if (result == XPOWERS_AXP2101_CHIP_ID) {
#ifdef DEBUG
DEBUG_UART_MSG("PMU ID: ");
DEBUG_UART_MSG2((uint32_t)result, 1, 0);
DEBUG_UART_MSG("\n\r");
#endif
pmu_online = 1;
} else {
#ifdef DEBUG
DEBUG_UART_MSG("PMU not online!\n\r");
#endif
}
// Start LCD and KBD backlight PWM
lcd_backlight_off();
if (HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1) != HAL_OK)
Error_Handler();
kbd_backlight_on();
if (HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_3) != HAL_OK)
Error_Handler();
#ifdef DEBUG
DEBUG_UART_MSG("Bckl params: ");
DEBUG_UART_MSG2(((uint32_t)result >> 8), 1, 1);
DEBUG_UART_MSG(", ");
DEBUG_UART_MSG2(((uint32_t)result & 0xFF), 1, 1);
DEBUG_UART_MSG("\n\r");
#endif
keyboard_set_key_callback(key_cb);
// Enable PICO power
LL_GPIO_SetOutputPin(PICO_EN_GPIO_Port, PICO_EN_Pin);
#ifdef DEBUG
DEBUG_UART_MSG("Pico started\n\r");
#endif
// Enable speaker Amp. power
LL_GPIO_SetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
HAL_Delay(500);
lcd_backlight_on();
// It is necessary to disable the detection function of the TS pin on the
// board without the battery temperature detection function, otherwise it will
// cause abnormal charging
AXP2101_setSysPowerDownVoltage(2800);
AXP2101_disableTSPinMeasure();
// AXP2101_enableTemperatureMeasure();
AXP2101_enableBattDetection();
AXP2101_enableVbusVoltageMeasure();
AXP2101_enableBattVoltageMeasure();
AXP2101_enableSystemVoltageMeasure();
AXP2101_setChargingLedMode(XPOWERS_CHG_LED_CTRL_CHG);
AXP2101_disableIRQ(XPOWERS_AXP2101_ALL_IRQ);
AXP2101_clearIrqStatus();
AXP2101_enableIRQ(XPOWERS_AXP2101_BAT_INSERT_IRQ |
XPOWERS_AXP2101_BAT_REMOVE_IRQ | // BATTERY
XPOWERS_AXP2101_VBUS_INSERT_IRQ |
XPOWERS_AXP2101_VBUS_REMOVE_IRQ | // VBUS
XPOWERS_AXP2101_PKEY_SHORT_IRQ |
XPOWERS_AXP2101_PKEY_LONG_IRQ | // POWER KEY
XPOWERS_AXP2101_BAT_CHG_DONE_IRQ |
XPOWERS_AXP2101_BAT_CHG_START_IRQ // CHARGE
// XPOWERS_AXP2101_PKEY_NEGATIVE_IRQ |
// XPOWERS_AXP2101_PKEY_POSITIVE_IRQ | //POWER KEY
);
// setLowBatWarnThreshold Range: 5% ~ 20%
// The following data is obtained from actual testing , Please see the description below for the test method.
// 20% ~= 3.7v
// 15% ~= 3.6v
// 10% ~= 3.55V
// 5% ~= 3.5V
// 1% ~= 3.4V
AXP2101_setLowBatWarnThreshold(20); // Set to trigger interrupt when reaching 20%
// setLowBatShutdownThreshold Range: 0% ~ 15%
// The following data is obtained from actual testing , Please see the description below for the test method.
// 15% ~= 3.6v
// 10% ~= 3.55V
// 5% ~= 3.5V
// 1% ~= 3.4V
AXP2101_setLowBatShutdownThreshold(5); //This is related to the battery charging and discharging logic. If you're not sure what you're doing, please don't modify it, as it could damage the battery.
keycb_start = 1;
sync_bat();
low_bat();
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
LL_IWDG_ReloadCounter(IWDG);
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
// Re-arm I2CS in case of lost master signal
if (i2cs_state != I2CS_STATE_IDLE && i2cs_rearm_counter > I2CS_REARM_TIMEOUT)
i2cs_state = I2CS_STATE_IDLE;
reg_sync();
check_pmu_int();
keyboard_process();
hw_check_HP_presence();
//HAL_Delay(10);
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
LL_FLASH_SetLatency(LL_FLASH_LATENCY_0);
while(LL_FLASH_GetLatency()!= LL_FLASH_LATENCY_0)
{
}
LL_RCC_HSE_Enable();
/* Wait till HSE is ready */
while(LL_RCC_HSE_IsReady() != 1)
{
}
LL_RCC_LSI_Enable();
/* Wait till LSI is ready */
while(LL_RCC_LSI_IsReady() != 1)
{
}
LL_PWR_EnableBkUpAccess();
if(LL_RCC_GetRTCClockSource() != LL_RCC_RTC_CLKSOURCE_LSE)
{
LL_RCC_ForceBackupDomainReset();
LL_RCC_ReleaseBackupDomainReset();
}
LL_RCC_LSE_Enable();
/* Wait till LSE is ready */
while(LL_RCC_LSE_IsReady() != 1)
{
}
if(LL_RCC_GetRTCClockSource() != LL_RCC_RTC_CLKSOURCE_LSE)
{
LL_RCC_SetRTCClockSource(LL_RCC_RTC_CLKSOURCE_LSE);
}
LL_RCC_EnableRTC();
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_2);
LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_1);
LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1);
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSE);
/* Wait till System clock is ready */
while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSE)
{
}
LL_SetSystemCoreClock(4000000);
/* Update the time base */
if (HAL_InitTick (TICK_INT_PRIORITY) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief I2C1 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C1_Init(void)
{
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.ClockSpeed = 10000;
hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c1.Init.OwnAddress1 = 62;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* @brief I2C2 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C2_Init(void)
{
/* USER CODE BEGIN I2C2_Init 0 */
/* USER CODE END I2C2_Init 0 */
/* USER CODE BEGIN I2C2_Init 1 */
/* USER CODE END I2C2_Init 1 */
hi2c2.Instance = I2C2;
hi2c2.Init.ClockSpeed = 100000;
hi2c2.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c2.Init.OwnAddress1 = 0;
hi2c2.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c2.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c2.Init.OwnAddress2 = 0;
hi2c2.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c2.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C2_Init 2 */
/* USER CODE END I2C2_Init 2 */
}
/**
* @brief IWDG Initialization Function
* @param None
* @retval None
*/
static void MX_IWDG_Init(void)
{
/* USER CODE BEGIN IWDG_Init 0 */
/* USER CODE END IWDG_Init 0 */
/* USER CODE BEGIN IWDG_Init 1 */
#ifndef DEBUG
/* USER CODE END IWDG_Init 1 */
LL_IWDG_Enable(IWDG);
LL_IWDG_EnableWriteAccess(IWDG);
LL_IWDG_SetPrescaler(IWDG, LL_IWDG_PRESCALER_32);
LL_IWDG_SetReloadCounter(IWDG, 4095);
while (LL_IWDG_IsReady(IWDG) != 1)
{
}
LL_IWDG_ReloadCounter(IWDG);
/* USER CODE BEGIN IWDG_Init 2 */
#endif
/* USER CODE END IWDG_Init 2 */
}
/**
* @brief RTC Initialization Function
* @param None
* @retval None
*/
static void MX_RTC_Init(void)
{
/* USER CODE BEGIN RTC_Init 0 */
/* USER CODE END RTC_Init 0 */
LL_RTC_InitTypeDef RTC_InitStruct = {0};
LL_RTC_TimeTypeDef RTC_TimeStruct = {0};
LL_PWR_EnableBkUpAccess();
/* Enable BKP CLK enable for backup registers */
LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_BKP);
/* Peripheral clock enable */
LL_RCC_EnableRTC();
/* USER CODE BEGIN RTC_Init 1 */
/* USER CODE END RTC_Init 1 */
/** Initialize RTC and set the Time and Date
*/
RTC_InitStruct.AsynchPrescaler = 0xFFFFFFFFU;
LL_RTC_Init(RTC, &RTC_InitStruct);
LL_RTC_SetAsynchPrescaler(RTC, 0xFFFFFFFFU);
/** Initialize RTC and set the Time and Date
*/
RTC_TimeStruct.Hours = 0;
RTC_TimeStruct.Minutes = 0;
RTC_TimeStruct.Seconds = 0;
LL_RTC_TIME_Init(RTC, LL_RTC_FORMAT_BCD, &RTC_TimeStruct);
/** Initialize RTC and set the Time and Date
*/
/* USER CODE BEGIN RTC_Init 2 */
/* USER CODE END RTC_Init 2 */
}
/**
* @brief TIM1 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM1_Init(void)
{
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 0;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 800;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 0;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM1_Init 2 */
/* USER CODE END TIM1_Init 2 */
HAL_TIM_MspPostInit(&htim1);
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 4-1;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 1000;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
/**
* @brief TIM3 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM3_Init(void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 0;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 512;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END TIM3_Init 2 */
HAL_TIM_MspPostInit(&htim3);
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
#ifdef DEBUG
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
#endif
/* USER CODE END USART1_Init 2 */
}
/**
* @brief USART3 Initialization Function
* @param None
* @retval None
*/
static void MX_USART3_UART_Init(void)
{
/* USER CODE BEGIN USART3_Init 0 */
/* USER CODE END USART3_Init 0 */
/* USER CODE BEGIN USART3_Init 1 */
#ifdef UART_PICO_INTERFACE
/* USER CODE END USART3_Init 1 */
huart3.Instance = USART3;
huart3.Init.BaudRate = 115200;
huart3.Init.WordLength = UART_WORDLENGTH_8B;
huart3.Init.StopBits = UART_STOPBITS_1;
huart3.Init.Parity = UART_PARITY_NONE;
huart3.Init.Mode = UART_MODE_TX_RX;
huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart3.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart3) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART3_Init 2 */
#endif
/* USER CODE END USART3_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
LL_EXTI_InitTypeDef EXTI_InitStruct = {0};
LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOC);
LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOD);
LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOA);
LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOB);
/**/
LL_GPIO_SetOutputPin(GPIOC, SYS_LED_Pin|COL_1_Pin|COL_2_Pin|COL_3_Pin
|COL_4_Pin|COL_5_Pin|COL_6_Pin|COL_7_Pin
|COL_8_Pin);
/**/
LL_GPIO_ResetOutputPin(GPIOA, PICO_EN_Pin|SP_AMP_EN_Pin);
/**/
GPIO_InitStruct.Pin = SYS_LED_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_MEDIUM;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_OPENDRAIN;
LL_GPIO_Init(SYS_LED_GPIO_Port, &GPIO_InitStruct);
/**/
GPIO_InitStruct.Pin = COL_1_Pin|COL_2_Pin|COL_3_Pin|COL_4_Pin
|COL_5_Pin|COL_6_Pin|COL_7_Pin|COL_8_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_OPENDRAIN;
LL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/**/
GPIO_InitStruct.Pin = ROW_1_Pin|ROW_2_Pin|ROW_3_Pin|ROW_4_Pin
|ROW_5_Pin|ROW_6_Pin|ROW_7_Pin|ROW_8_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
LL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/**/
GPIO_InitStruct.Pin = KEY_1_Pin|KEY_2_Pin|KEY_3_Pin|KEY_9_Pin
|KEY_10_Pin|KEY_11_Pin|KEY_12_Pin|KEY_4_Pin
|KEY_5_Pin|KEY_6_Pin|KEY_7_Pin|KEY_8_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
LL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/**/
GPIO_InitStruct.Pin = LL_GPIO_PIN_11|LL_GPIO_PIN_12|LL_GPIO_PIN_15;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG;
LL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/**/
GPIO_InitStruct.Pin = PICO_EN_Pin|SP_AMP_EN_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
LL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/**/
GPIO_InitStruct.Pin = HP_DET_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_FLOATING;
LL_GPIO_Init(HP_DET_GPIO_Port, &GPIO_InitStruct);
/**/
GPIO_InitStruct.Pin = LL_GPIO_PIN_2;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG;
LL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/**/
LL_GPIO_AF_SetEXTISource(LL_GPIO_AF_EXTI_PORTC, LL_GPIO_AF_EXTI_LINE9);
/**/
EXTI_InitStruct.Line_0_31 = LL_EXTI_LINE_9;
EXTI_InitStruct.LineCommand = ENABLE;
EXTI_InitStruct.Mode = LL_EXTI_MODE_IT;
EXTI_InitStruct.Trigger = LL_EXTI_TRIGGER_FALLING;
LL_EXTI_Init(&EXTI_InitStruct);
/**/
LL_GPIO_SetPinMode(PMU_IRQ_GPIO_Port, PMU_IRQ_Pin, LL_GPIO_MODE_FLOATING);
/* EXTI interrupt init*/
NVIC_SetPriority(EXTI9_5_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),3, 0));
NVIC_EnableIRQ(EXTI9_5_IRQn);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/*
static void lock_cb(uint8_t caps_changed, uint8_t num_changed) {
//uint8_t do_int = 0;
if (caps_changed && reg_is_bit_set(REG_ID_CFG, CFG_CAPSLOCK_INT)) {
reg_set_bit(REG_ID_INT, INT_CAPSLOCK);
//do_int = 1;
}
if (num_changed && reg_is_bit_set(REG_ID_CFG, CFG_NUMLOCK_INT)) {
reg_set_bit(REG_ID_INT, INT_NUMLOCK);
//do_int = 1;
}
// int_pin can be a LED
if (do_int) {
port_pin_set_output_level(int_pin, 0);
delay_ms(INT_DURATION_MS);
port_pin_set_output_level(int_pin, 1);
}
}
*/
static void key_cb(char key, enum key_state state) {
if (keycb_start == 0) {
fifo_flush();
return;
}
if (reg_is_bit_set(REG_ID_CFG, CFG_KEY_INT)) {
reg_set_bit(REG_ID_INT, INT_KEY);
}
#ifdef DEBUG
// Serial1.println("key: 0x%02X/%d/%c, state: %d, blk: %d\r\n", key, key, key, state, reg_get_value(REG_ID_BKL));
//HAL_UART_Transmit_IT(&huart1, HP_PLUG_MSG, HP_PLUG_MSG_LEN);
#endif
const struct fifo_item item = {key, state};
if (!fifo_enqueue(item)) {
if (reg_is_bit_set(REG_ID_CFG, CFG_OVERFLOW_INT)) {
reg_set_bit(REG_ID_INT, INT_OVERFLOW); // INT_OVERFLOW The interrupt was generated by FIFO overflow.
}
if (reg_is_bit_set(REG_ID_CFG, CFG_OVERFLOW_ON)) fifo_enqueue_force(item);
}
#ifdef DEBUG
//Serial1.println(key);
//HAL_UART_Transmit_IT(&huart1, HP_PLUG_MSG, HP_PLUG_MSG_LEN);
#endif
}
__STATIC_INLINE void hw_check_HP_presence(void) {
uint32_t v = LL_GPIO_IsInputPinSet(HP_DET_GPIO_Port, HP_DET_Pin);
if (v != head_phone_status) {
if (v != 0) {
#ifdef DEBUG
DEBUG_UART_MSG("HeadPhone inserted\n\r");
#endif
LL_GPIO_ResetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
} else {
#ifdef DEBUG
DEBUG_UART_MSG("HeadPhone removed\n\r");
#endif
LL_GPIO_SetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
}
head_phone_status = v;
}
}
__STATIC_INLINE void sync_bat(void) {
uint8_t pcnt;
if (AXP2101_getBatteryPercent(&pcnt) != HAL_OK)
return;
#ifdef DEBUG
DEBUG_UART_MSG("check_pmu_int: ");
DEBUG_UART_MSG2((uint32_t)pcnt, 1, 0);
DEBUG_UART_MSG("\n\r");
#endif
if (pcnt > 100) { // disconnect
pcnt = 0;
} else { // battery connected
if (AXP2101_isCharging())
pcnt |= (1 << 7);
low_bat();
}
reg_set_value(REG_ID_BAT, pcnt);
}
__STATIC_INLINE void check_pmu_int(void) {
if (!pmu_online)
return;
uint8_t pcnt;
if (uptime_ms() - pmu_check_counter > 20000) {
pmu_check_counter = uptime_ms(); // reset time
AXP2101_getBatteryPercent(&pcnt);
#ifdef DEBUG
DEBUG_UART_MSG("check_pmu_int: ");
DEBUG_UART_MSG2((uint32_t)pcnt, 1, 0);
DEBUG_UART_MSG("\n\r");
#endif
if (pcnt > 100) { // disconnect
pcnt = 0;
} else { // battery connected
if (AXP2101_isCharging())
pcnt |= (1 << 7);
low_bat();
}
reg_set_value(REG_ID_BAT,pcnt);
}
if (pmu_irq) {
pmu_irq = 0; // Reset interrupt flag
// Get PMU Interrupt Status Register
uint32_t status;
AXP2101_getIrqStatus(&status);
#ifdef DEBUG
DEBUG_UART_MSG("PMU IRQ status: ");
DEBUG_UART_MSG2(status, 4, 1);
DEBUG_UART_MSG("\n\r");
#endif
/*
// When the set low-voltage battery percentage warning threshold is reached,
// set the threshold through getLowBatWarnThreshold( 5% ~ 20% )
if (PMU.isDropWarningLevel2Irq()) {
Serial1.println("isDropWarningLevel2");
//report_bat();
}
*/
// When the set low-voltage battery percentage shutdown threshold is reached
// set the threshold through setLowBatShutdownThreshold()
//This is related to the battery charging and discharging logic. If you're not sure what you're doing, please don't modify it, as it could damage the battery.
if (AXP2101_isDropWarningLevel1Irq()) {
#ifdef DEBUG
DEBUG_UART_MSG("PMU: isDropWarningLevel1\n\r");
#endif
//report_bat();
//
AXP2101_shutdown();
}
/*if (PMU.isGaugeWdtTimeoutIrq()) {
Serial1.println("isWdtTimeout");
}
if (PMU.isBatChargerOverTemperatureIrq()) {
Serial1.println("isBatChargeOverTemperature");
}
if (PMU.isBatWorkOverTemperatureIrq()) {
Serial1.println("isBatWorkOverTemperature");
}
if (PMU.isBatWorkUnderTemperatureIrq()) {
Serial1.println("isBatWorkUnderTemperature");
}
if (PMU.isVbusInsertIrq()) {
Serial1.println("isVbusInsert");
}*/
if (AXP2101_isVbusRemoveIrq()) {
#ifdef DEBUG
DEBUG_UART_MSG("PMU: isVbusRemove\n\r");
#endif
stop_chg();
}
if (AXP2101_isBatInsertIrq()) {
AXP2101_getBatteryPercent(&pcnt);
if (pcnt > 100) { // disconnect
pcnt = 0;
} else { // battery connected
pcnt |= (1 << 7);
}
reg_set_value(REG_ID_BAT, pcnt);
#ifdef DEBUG
DEBUG_UART_MSG("PMU: isBatInsert\n\r");
#endif
}
if (AXP2101_isBatRemoveIrq()) {
reg_set_value(REG_ID_BAT,0);
#ifdef DEBUG
DEBUG_UART_MSG("PMU: isBatRemove\n\r");
#endif
stop_chg();
}
/*if (AXP2101_isPekeyShortPressIrq()) {
Serial1.println("isPekeyShortPress");
// enterPmuSleep();
Serial1.print("Read pmu data buffer .");
uint8_t data[4] = {0};
PMU.readDataBuffer(data, XPOWERS_AXP2101_DATA_BUFFER_SIZE);
for (int i = 0; i < 4; ++i) {
Serial1.print(data[i]);
Serial1.print(",");
}
Serial1.println();
printPMU();
}*/
if (AXP2101_isPekeyLongPressIrq()) {
#ifdef DEBUG
DEBUG_UART_MSG("PMU: isPekeyLongPress\n\r");
#endif
//Serial1.println("write pmu data buffer .");
//uint8_t data[4] = {1, 2, 3, 4};
//PMU.writeDataBuffer(data, XPOWERS_AXP2101_DATA_BUFFER_SIZE);
LL_GPIO_ResetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
LL_GPIO_ResetOutputPin(PICO_EN_GPIO_Port, PICO_EN_Pin);
AXP2101_setChargingLedMode(XPOWERS_CHG_LED_CTRL_CHG);
AXP2101_shutdown();
}
/*if (PMU.isPekeyNegativeIrq()) {
Serial1.println("isPekeyNegative");
}
if (PMU.isPekeyPositiveIrq()) {
Serial1.println("isPekeyPositive");
}
if (PMU.isLdoOverCurrentIrq()) {
Serial1.println("isLdoOverCurrentIrq");
}
if (PMU.isBatfetOverCurrentIrq()) {
Serial1.println("isBatfetOverCurrentIrq");
}*/
if (AXP2101_isBatChargeDoneIrq()) {
AXP2101_getBatteryPercent(&pcnt);
if (pcnt > 100) { // disconnect
pcnt = 0;
} else { // battery connected
pcnt |= (1 << 7);
}
reg_set_value(REG_ID_BAT,pcnt);
#ifdef DEBUG
DEBUG_UART_MSG("PMU: isBatChagerDone\n\r");
#endif
stop_chg();
}
if (AXP2101_isBatChargeStartIrq()) {
AXP2101_getBatteryPercent(&pcnt);
if (pcnt > 100) { // disconnect
pcnt = 0;
} else { // battery connected
pcnt |= (1 << 7);
}
reg_set_value(REG_ID_BAT,pcnt);
#ifdef DEBUG
DEBUG_UART_MSG("PMU: isBatChagerStart\n\r");
#endif
if(AXP2101_isBatteryConnect())
start_chg();
}
/*if (PMU.isBatDieOverTemperatureIrq()) {
Serial1.println("isBatDieOverTemperature");
}
if (PMU.isChagerOverTimeoutIrq()) {
Serial1.println("isChagerOverTimeout");
}
if (PMU.isBatOverVoltageIrq()) {
Serial1.println("isBatOverVoltage");
}*/
// Clear PMU Interrupt Status Register
AXP2101_clearIrqStatus();
}
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1) {
//LL_GPIO_TogglePin(SYS_LED_GPIO_Port, SYS_LED_Pin);
HAL_Delay(500);
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */