889 lines
26 KiB
C
889 lines
26 KiB
C
/**
|
|
******************************************************************************
|
|
*
|
|
* Copyright (c) 2025 C.ARE (JackCarterSmith).
|
|
* All rights reserved.
|
|
*
|
|
* This software is licensed under terms that can be found in the LICENSE file
|
|
* in the root directory of this software component.
|
|
*
|
|
******************************************************************************
|
|
*
|
|
* SYS_LED and COL_x are open-drain, output logic is inverted.
|
|
*
|
|
*/
|
|
|
|
#include "hal_interface.h"
|
|
#include "cmsis_gcc.h"
|
|
#include "axp2101.h"
|
|
#include "backlight.h"
|
|
#include "batt.h"
|
|
#include "eeprom.h"
|
|
#include "fifo.h"
|
|
#include "keyboard.h"
|
|
#include "regs.h"
|
|
|
|
|
|
// Private define ------------------------------------------------------------
|
|
//#define DEFAULT_LCD_BL (205) // ~40% PWM@7.81kHz (9 bits resolution)
|
|
//#define DEFAULT_KBD_BL (20) // ~4% PWM@7.81kHz (9 bits resolution)
|
|
#define DEFAULT_LCD_BL (3) //step-4 (~50%)
|
|
#define DEFAULT_KBD_BL (0) //step-1 (0%)
|
|
#define DEFAULT_KBD_FREQ (KEY_POLL_TIME)
|
|
#define DEFAULT_KBD_DEB (KEY_HOLD_TIME)
|
|
|
|
#define I2CS_REARM_TIMEOUT 500
|
|
#define I2CS_W_BUFF_LEN 31+1 // The last one must be only a 0 value, TODO: another cleaner way?
|
|
|
|
#ifdef DEBUG
|
|
#define DEBUG_UART_MSG(msg) HAL_UART_Transmit(&huart1, (uint8_t*)msg, sizeof(msg)-1, 1000)
|
|
//#define DEBUG_UART_MSG2(d,s) HAL_UART_Transmit(&huart1, (uint8_t*)d, s, 200)
|
|
#define DEBUG_UART_MSG2(d,sz, swp) uart_rawdata_write(d,sz,swp)
|
|
#endif
|
|
|
|
#define STM32F1xxx_BL_ADDR 0x1FFFF000 // STM32 bootloader memory address
|
|
|
|
|
|
// Private typedef -----------------------------------------------------------
|
|
enum i2cs_state {
|
|
//I2CS_STATE_HALT,
|
|
I2CS_STATE_IDLE,
|
|
I2CS_STATE_REG_REQUEST,
|
|
I2CS_STATE_REG_ANSWER
|
|
};
|
|
|
|
|
|
// Private variables ---------------------------------------------------------
|
|
extern I2C_HandleTypeDef hi2c1;
|
|
extern I2C_HandleTypeDef hi2c2;
|
|
|
|
extern TIM_HandleTypeDef htim1;
|
|
extern TIM_HandleTypeDef htim2;
|
|
extern TIM_HandleTypeDef htim3;
|
|
|
|
#ifdef DEBUG
|
|
extern UART_HandleTypeDef huart1;
|
|
static const uint8_t hexmap[] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'};
|
|
#endif
|
|
#ifdef UART_PICO_INTERFACE
|
|
extern UART_HandleTypeDef huart3;
|
|
#endif
|
|
|
|
volatile uint32_t systicks_counter = 0; // 1 MHz systick counter
|
|
static uint32_t pmu_check_counter = 0;
|
|
static uint32_t i2cs_rearm_counter = 0;
|
|
|
|
static uint8_t i2cs_r_buff[5];
|
|
static volatile uint8_t i2cs_r_idx = 0;
|
|
static uint8_t i2cs_w_buff[I2CS_W_BUFF_LEN];
|
|
static volatile uint8_t i2cs_w_idx = 0;
|
|
static volatile uint8_t i2cs_w_len = 0;
|
|
static enum i2cs_state i2cs_state = I2CS_STATE_IDLE;
|
|
|
|
static uint8_t keycb_start = 0;
|
|
static uint32_t head_phone_status = 0; // TODO: Combine status registers
|
|
|
|
volatile uint8_t pmu_irq = 0;
|
|
static uint32_t pmu_online = 0;
|
|
|
|
struct blvt_t {
|
|
__IO uint32_t __sp;
|
|
__attribute((noreturn)) void (*__bl_call)(void);
|
|
};
|
|
#define STM32F1xxx_BL_VECTOR_TABLE ((struct blvt_t *)STM32F1xxx_BL_ADDR)
|
|
|
|
|
|
// Private variables ---------------------------------------------------------
|
|
//static void lock_cb(uint8_t caps_changed, uint8_t num_changed);
|
|
static void reset_to_bootloader(uint32_t* addr);
|
|
static void key_cb(char key, enum key_state state);
|
|
static void hw_check_HP_presence(void);
|
|
static void sync_bat(void);
|
|
#ifdef DEBUG
|
|
static void printPMU(void);
|
|
#endif
|
|
static void check_pmu_int(void);
|
|
|
|
extern void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
|
|
if (htim == &htim2) {
|
|
systicks_counter += 1;
|
|
}
|
|
}
|
|
|
|
extern void HAL_I2C_AddrCallback(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode) {
|
|
if (hi2c == &hi2c1) {
|
|
// I2C slave addr match error detection
|
|
if (AddrMatchCode != 0x3E) // 0x1F << 1
|
|
return;
|
|
|
|
if (TransferDirection == I2C_DIRECTION_TRANSMIT) {
|
|
if (i2cs_state == I2CS_STATE_IDLE) {
|
|
i2cs_state = I2CS_STATE_REG_REQUEST;
|
|
|
|
i2cs_r_idx = 0;
|
|
HAL_I2C_Slave_Sequential_Receive_IT(hi2c, i2cs_r_buff, 1, I2C_FIRST_FRAME); // This write the first received byte to i2cs_r_buff[0]
|
|
|
|
i2cs_rearm_counter = uptime_ms();
|
|
}
|
|
}
|
|
|
|
if (TransferDirection == I2C_DIRECTION_RECEIVE) {
|
|
if (i2cs_state == I2CS_STATE_REG_REQUEST) {
|
|
const uint8_t is_write = (uint8_t)(i2cs_r_buff[0] & (1 << 7));
|
|
const uint8_t reg = (uint8_t)(i2cs_r_buff[0] & ~(1 << 7));
|
|
|
|
i2cs_w_buff[0] = reg;
|
|
i2cs_w_len = 2;
|
|
|
|
if (reg == REG_ID_BKL) { // We wait an another byte for these registers
|
|
if (is_write)
|
|
lcd_backlight_update(i2cs_r_buff[1]);
|
|
i2cs_w_buff[1] = reg_get_value(REG_ID_BKL);
|
|
} else if (reg == REG_ID_BK2) {
|
|
if (is_write)
|
|
kbd_backlight_update(i2cs_r_buff[1]);
|
|
i2cs_w_buff[1] = reg_get_value(REG_ID_BK2);
|
|
} else if (reg == REG_ID_CFG) {
|
|
if (is_write)
|
|
reg_set_value(REG_ID_CFG, i2cs_r_buff[1]);
|
|
i2cs_w_buff[1] = reg_get_value(REG_ID_CFG);
|
|
} else if (reg == REG_ID_INT_CFG) {
|
|
if (is_write)
|
|
reg_set_value(REG_ID_INT_CFG, i2cs_r_buff[1]);
|
|
i2cs_w_buff[1] = reg_get_value(REG_ID_INT_CFG);
|
|
} else if (reg == REG_ID_DEB) {
|
|
if (is_write) {
|
|
keyboard_set_hold_period(*((uint16_t*)&i2cs_r_buff[1]));
|
|
reg_set_value(REG_ID_DEB, 0); // Trig async flag for EEPROM saving
|
|
}
|
|
*((uint16_t*)&i2cs_w_buff[1]) = keyboard_get_hold_period();
|
|
i2cs_w_len = 3;
|
|
} else if (reg == REG_ID_FRQ) {
|
|
if (is_write)
|
|
reg_set_value(REG_ID_FRQ, i2cs_r_buff[1]);
|
|
i2cs_w_buff[1] = reg_get_value(REG_ID_FRQ);
|
|
} else if (reg == REG_ID_FIF) {
|
|
struct fifo_item item = {0};
|
|
fifo_dequeue(&item);
|
|
i2cs_w_buff[0] = item.state;
|
|
i2cs_w_buff[1] = item.key;
|
|
} else if (reg == REG_ID_INT) {
|
|
i2cs_w_buff[1] = reg_get_value(REG_ID_INT);
|
|
LL_GPIO_SetOutputPin(PICO_IRQ_GPIO_Port, PICO_IRQ_Pin); // De-assert the IRQ signal
|
|
} else if (reg == REG_ID_VER) {
|
|
i2cs_w_buff[1] = reg_get_value(REG_ID_VER);
|
|
} else if (reg == REG_ID_TYP) {
|
|
i2cs_w_buff[1] = reg_get_value(REG_ID_TYP);
|
|
} else if (reg == REG_ID_BAT) {
|
|
i2cs_w_buff[1] = reg_get_value(REG_ID_BAT);
|
|
} else if (reg == REG_ID_KEY) {
|
|
i2cs_w_buff[0] = fifo_count();
|
|
i2cs_w_buff[0] |= keyboard_get_numlock() ? KEY_NUMLOCK : 0x00;
|
|
i2cs_w_buff[0] |= keyboard_get_capslock() ? KEY_CAPSLOCK : 0x00;
|
|
} else if (reg == REG_ID_C64_MTX) {
|
|
//memcpy(write_buffer + 1, io_matrix, sizeof(io_matrix));
|
|
*((uint32_t*)(&i2cs_w_buff[1]) + 0) = *((uint32_t*)(io_matrix) + 0);
|
|
*((uint32_t*)(&i2cs_w_buff[1]) + 1) = *((uint32_t*)(io_matrix) + 1);
|
|
i2cs_w_buff[9] = io_matrix[8];
|
|
i2cs_w_len = 10;
|
|
} else if (reg == REG_ID_C64_JS) {
|
|
i2cs_w_buff[1] = js_bits;
|
|
} else if (reg == REG_ID_RST) {
|
|
if (is_write)
|
|
reg_set_value(REG_ID_RST, 1);
|
|
i2cs_w_buff[1] = reg_get_value(REG_ID_RST);
|
|
} else if (reg == REG_ID_RST_PICO) {
|
|
if (is_write)
|
|
reg_set_value(REG_ID_RST_PICO, 1);
|
|
i2cs_w_buff[1] = reg_get_value(REG_ID_RST_PICO);
|
|
} else if (reg == REG_ID_SHTDW) {
|
|
if (is_write) {
|
|
reg_set_value(REG_ID_SHTDW, 1);
|
|
return; // Ignore answer, everything will be shutdown
|
|
}
|
|
i2cs_w_buff[1] = 0;
|
|
} else {
|
|
i2cs_w_buff[0] = 0;
|
|
i2cs_w_buff[1] = 0;
|
|
}
|
|
|
|
i2cs_state = I2CS_STATE_REG_ANSWER;
|
|
i2cs_w_idx = 0;
|
|
|
|
HAL_I2C_Slave_Sequential_Transmit_IT(hi2c, i2cs_w_buff, i2cs_w_len, I2C_FIRST_AND_LAST_FRAME);
|
|
|
|
i2cs_rearm_counter = uptime_ms();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
extern void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *hi2c) {
|
|
if (hi2c == &hi2c1) {
|
|
i2cs_r_idx++;
|
|
|
|
if (i2cs_state == I2CS_STATE_REG_REQUEST) {
|
|
const uint8_t is_write = (uint8_t)(i2cs_r_buff[0] & (1 << 7));
|
|
const uint8_t reg = (uint8_t)(i2cs_r_buff[0] & ~(1 << 7));
|
|
uint8_t bytes_needed = 0;
|
|
|
|
// Check for another mandatories bytes depending on register requested
|
|
if (reg == REG_ID_BKL ||
|
|
reg == REG_ID_BK2 ||
|
|
reg == REG_ID_CFG ||
|
|
reg == REG_ID_INT_CFG ||
|
|
reg == REG_ID_FRQ) {
|
|
if (is_write)
|
|
bytes_needed = 1;
|
|
|
|
} else if (reg == REG_ID_DEB) {
|
|
if (is_write)
|
|
bytes_needed = 2;
|
|
}
|
|
|
|
if (bytes_needed > 0)
|
|
HAL_I2C_Slave_Sequential_Receive_IT(hi2c, i2cs_r_buff + i2cs_r_idx, bytes_needed, I2C_NEXT_FRAME); // This write the second or more received byte to i2cs_r_buff[1]
|
|
}
|
|
}
|
|
}
|
|
|
|
extern void HAL_I2C_ListenCpltCallback (I2C_HandleTypeDef *hi2c) {
|
|
if (hi2c == &hi2c1) {
|
|
if (i2cs_state == I2CS_STATE_REG_ANSWER)
|
|
i2cs_state = I2CS_STATE_IDLE;
|
|
|
|
HAL_I2C_EnableListen_IT(hi2c);
|
|
}
|
|
}
|
|
|
|
extern void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c) {
|
|
if (hi2c == &hi2c1)
|
|
if (HAL_I2C_GetError(hi2c) != HAL_I2C_ERROR_AF)
|
|
Error_Handler();
|
|
// Actually this will trigger the watchdog and restart the system... That can ruin the day of the user.
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
void uart_rawdata_write(uint32_t c, size_t s, uint8_t swap) {
|
|
uint8_t r[4];
|
|
uint32_t v = swap ? __REV(c) : c;
|
|
|
|
HAL_UART_Transmit(&huart1, (uint8_t*)"0x", 2, 40);
|
|
for (size_t i = 0; i < s; i++) {
|
|
uint8_t index = swap ? (uint8_t)(4-s+i) : (uint8_t)i;
|
|
r[0] = hexmap[(((uint8_t*)&v)[index] & 0xF0) >> 4];
|
|
r[1] = hexmap[((uint8_t*)&v)[index] & 0x0F];
|
|
HAL_UART_Transmit(&huart1, r, 2, 40);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
/**
|
|
* @brief The application entry point.
|
|
* @retval int
|
|
*/
|
|
int main(void) {
|
|
uint32_t result = 0;
|
|
|
|
// Initialize the STM32 HAL system
|
|
result = HAL_Interface_init();
|
|
if (result != HAL_OK)
|
|
Error_Handler();
|
|
|
|
LL_GPIO_ResetOutputPin(SYS_LED_GPIO_Port, SYS_LED_Pin); // I'm alive!
|
|
|
|
reset_to_bootloader((uint32_t*)STM32F1xxx_BL_ADDR);
|
|
|
|
// Start the systick timer
|
|
if (HAL_TIM_Base_Start_IT(&htim2) != HAL_OK)
|
|
Error_Handler();
|
|
|
|
// EEPROM emulation init
|
|
if (EEPROM_Init() != EEPROM_SUCCESS)
|
|
Error_Handler();
|
|
#ifdef DEBUG
|
|
DEBUG_UART_MSG("EEPROM init\n\r");
|
|
#endif
|
|
|
|
// Check EEPROM first run
|
|
EEPROM_ReadVariable(EEPROM_VAR_ID, (EEPROM_Value*)&result);
|
|
if ((uint16_t)result != 0xCA1C) {
|
|
EEPROM_WriteVariable(EEPROM_VAR_BCKL, (EEPROM_Value)(uint16_t)((DEFAULT_LCD_BL << 8) | DEFAULT_KBD_BL), EEPROM_SIZE16);
|
|
EEPROM_WriteVariable(EEPROM_VAR_KBD, (EEPROM_Value)(uint32_t)((DEFAULT_KBD_DEB << 16) | DEFAULT_KBD_FREQ), EEPROM_SIZE32);
|
|
EEPROM_WriteVariable(EEPROM_VAR_CFG, (EEPROM_Value)(uint16_t)(((CFG_USE_MODS | CFG_REPORT_MODS) << 8) | (INT_OVERFLOW | INT_KEY)), EEPROM_SIZE16);
|
|
EEPROM_WriteVariable(EEPROM_VAR_ID, (EEPROM_Value)(uint16_t)0xCA1C, EEPROM_SIZE16);
|
|
#ifdef DEBUG
|
|
DEBUG_UART_MSG("EEPROM first start!\n\r");
|
|
#endif
|
|
}
|
|
|
|
// I2C-Pico interface registers
|
|
reg_init();
|
|
HAL_Delay(10);
|
|
if (HAL_I2C_EnableListen_IT(&hi2c1) != HAL_OK)
|
|
Error_Handler();
|
|
|
|
// Check for AXP2101 is accessible on secondary I2C bus
|
|
result = 0;
|
|
HAL_I2C_Mem_Read(&hi2c2, 0x68, XPOWERS_AXP2101_IC_TYPE, 1, (uint8_t*)&result, 1, 60);
|
|
if (result == XPOWERS_AXP2101_CHIP_ID) {
|
|
#ifdef DEBUG
|
|
DEBUG_UART_MSG("PMU ID: ");
|
|
DEBUG_UART_MSG2((uint32_t)result, 1, 0);
|
|
DEBUG_UART_MSG("\n\r");
|
|
#endif
|
|
pmu_online = 1;
|
|
}
|
|
#ifdef DEBUG
|
|
else {
|
|
DEBUG_UART_MSG("PMU not online!\n\r");
|
|
}
|
|
#endif
|
|
|
|
// Start LCD and KBD backlight PWM
|
|
lcd_backlight_off();
|
|
if (HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1) != HAL_OK)
|
|
Error_Handler();
|
|
kbd_backlight_on();
|
|
if (HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_3) != HAL_OK)
|
|
Error_Handler();
|
|
#ifdef DEBUG
|
|
DEBUG_UART_MSG("Bckl params: ");
|
|
DEBUG_UART_MSG2(((uint32_t)result >> 8), 1, 1);
|
|
DEBUG_UART_MSG(", ");
|
|
DEBUG_UART_MSG2(((uint32_t)result & 0xFF), 1, 1);
|
|
DEBUG_UART_MSG("\n\r");
|
|
#endif
|
|
keyboard_set_key_callback(key_cb);
|
|
|
|
// Enable PICO power
|
|
LL_GPIO_SetOutputPin(PICO_EN_GPIO_Port, PICO_EN_Pin);
|
|
#ifdef DEBUG
|
|
DEBUG_UART_MSG("Pico started\n\r");
|
|
#endif
|
|
|
|
// Enable speaker Amp. power
|
|
LL_GPIO_SetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
|
|
|
|
HAL_Delay(500);
|
|
lcd_backlight_on();
|
|
|
|
// It is necessary to disable the detection function of the TS pin on the
|
|
// board without the battery temperature detection function, otherwise it will
|
|
// cause abnormal charging
|
|
AXP2101_setSysPowerDownVoltage(2800);
|
|
AXP2101_disableTSPinMeasure();
|
|
// AXP2101_enableTemperatureMeasure();
|
|
AXP2101_enableBattDetection();
|
|
AXP2101_enableVbusVoltageMeasure();
|
|
AXP2101_enableBattVoltageMeasure();
|
|
AXP2101_enableSystemVoltageMeasure();
|
|
|
|
AXP2101_setChargingLedMode(XPOWERS_CHG_LED_CTRL_CHG);
|
|
|
|
AXP2101_disableIRQ(XPOWERS_AXP2101_ALL_IRQ);
|
|
AXP2101_clearIrqStatus();
|
|
AXP2101_enableIRQ(XPOWERS_AXP2101_BAT_INSERT_IRQ |
|
|
XPOWERS_AXP2101_BAT_REMOVE_IRQ | // BATTERY
|
|
XPOWERS_AXP2101_VBUS_INSERT_IRQ |
|
|
XPOWERS_AXP2101_VBUS_REMOVE_IRQ | // VBUS
|
|
XPOWERS_AXP2101_PKEY_SHORT_IRQ |
|
|
XPOWERS_AXP2101_PKEY_LONG_IRQ | // POWER KEY
|
|
XPOWERS_AXP2101_BAT_CHG_DONE_IRQ |
|
|
XPOWERS_AXP2101_BAT_CHG_START_IRQ // CHARGE
|
|
);
|
|
// setLowBatWarnThreshold Range: 5% ~ 20%
|
|
// The following data is obtained from actual testing , Please see the description below for the test method.
|
|
// 20% ~= 3.7v
|
|
// 15% ~= 3.6v
|
|
// 10% ~= 3.55V
|
|
// 5% ~= 3.5V
|
|
// 1% ~= 3.4V
|
|
AXP2101_setLowBatWarnThreshold(20); // Set to trigger interrupt when reaching 20%
|
|
|
|
// setLowBatShutdownThreshold Range: 0% ~ 15%
|
|
// The following data is obtained from actual testing , Please see the description below for the test method.
|
|
// 15% ~= 3.6v
|
|
// 10% ~= 3.55V
|
|
// 5% ~= 3.5V
|
|
// 1% ~= 3.4V
|
|
AXP2101_setLowBatShutdownThreshold(5); //This is related to the battery charging and discharging logic. If you're not sure what you're doing, please don't modify it, as it could damage the battery.
|
|
|
|
keycb_start = 1;
|
|
sync_bat();
|
|
low_bat();
|
|
|
|
while (1) {
|
|
LL_IWDG_ReloadCounter(IWDG);
|
|
|
|
// Re-arm I2CS in case of lost master signal
|
|
if (i2cs_state != I2CS_STATE_IDLE && ((uptime_ms() - i2cs_rearm_counter) > I2CS_REARM_TIMEOUT))
|
|
i2cs_state = I2CS_STATE_IDLE;
|
|
|
|
reg_sync();
|
|
check_pmu_int();
|
|
keyboard_process();
|
|
hw_check_HP_presence();
|
|
|
|
// Check internal status
|
|
if (reg_get_value(REG_ID_SHTDW) == 1) { // Nominal full system shutdown as requested from I2C bus
|
|
reg_set_value(REG_ID_SHTDW, 0);
|
|
LL_GPIO_ResetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
|
|
LL_GPIO_ResetOutputPin(PICO_EN_GPIO_Port, PICO_EN_Pin);
|
|
AXP2101_setChargingLedMode(XPOWERS_CHG_LED_CTRL_CHG);
|
|
|
|
AXP2101_shutdown();
|
|
} else if (reg_get_value(REG_ID_RST) == 1) { // Try to reset only the STM32
|
|
reg_set_value(REG_ID_RST, 0);
|
|
HAL_Delay(200); // Wait for final I2C answer
|
|
if (HAL_I2C_DisableListen_IT(&hi2c1) != HAL_OK)
|
|
Error_Handler();
|
|
LL_GPIO_ResetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
|
|
LL_GPIO_ResetOutputPin(PICO_EN_GPIO_Port, PICO_EN_Pin);
|
|
|
|
NVIC_SystemReset();
|
|
} else if (reg_get_value(REG_ID_RST_PICO) == 1) { // Reset only the Pico
|
|
reg_set_value(REG_ID_RST_PICO, 0);
|
|
HAL_Delay(200); // Wait for final I2C answer
|
|
if (HAL_I2C_DisableListen_IT(&hi2c1) != HAL_OK)
|
|
Error_Handler();
|
|
LL_GPIO_ResetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
|
|
LL_GPIO_ResetOutputPin(PICO_EN_GPIO_Port, PICO_EN_Pin);
|
|
|
|
HAL_Delay(200); // No need to use keyboard, so a simple delay should suffice
|
|
LL_GPIO_SetOutputPin(PICO_EN_GPIO_Port, PICO_EN_Pin);
|
|
LL_GPIO_SetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
|
|
if (HAL_I2C_EnableListen_IT(&hi2c1) != HAL_OK)
|
|
Error_Handler();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
static void lock_cb(uint8_t caps_changed, uint8_t num_changed) {
|
|
uint8_t int_trig = 0;
|
|
|
|
if (caps_changed && reg_is_bit_set(REG_ID_CFG, CFG_CAPSLOCK_INT)) {
|
|
reg_set_bit(REG_ID_INT, INT_CAPSLOCK);
|
|
int_trig = 1;
|
|
}
|
|
|
|
if (num_changed && reg_is_bit_set(REG_ID_CFG, CFG_NUMLOCK_INT)) {
|
|
reg_set_bit(REG_ID_INT, INT_NUMLOCK);
|
|
int_trig = 1;
|
|
}
|
|
|
|
#ifndef UART_PICO_INTERFACE
|
|
if (int_trig == 1)
|
|
LL_GPIO_ResetOutputPin(PICO_IRQ_GPIO_Port, PICO_IRQ_Pin); // Assert the IRQ signal to the pico
|
|
#endif
|
|
}
|
|
*/
|
|
|
|
|
|
__attribute__((naked, noreturn)) static void BootJumpASM(
|
|
__attribute__((unused)) uint32_t __SP,
|
|
__attribute__((unused)) uint32_t __RH )
|
|
{
|
|
__asm("MSR MSP,r0");
|
|
__asm("BX r1");
|
|
}
|
|
|
|
static void reset_to_bootloader(uint32_t* addr) {
|
|
// Disable IRQ to not break everything
|
|
__disable_irq();
|
|
|
|
// Reset the system to a boot state
|
|
//HAL_RCC_DeInit();
|
|
SysTick->CTRL = 0;
|
|
SysTick->LOAD = 0;
|
|
SysTick->VAL = 0;
|
|
SCB->ICSR |= SCB_ICSR_PENDSTCLR_Msk ;
|
|
|
|
// Disable individual fault handlers if the bootloader used them
|
|
SCB->SHCSR &= ~( SCB_SHCSR_USGFAULTENA_Msk | \
|
|
SCB_SHCSR_BUSFAULTENA_Msk | \
|
|
SCB_SHCSR_MEMFAULTENA_Msk ) ;
|
|
|
|
for (uint8_t i = 0; i < sizeof(NVIC->ICER) / sizeof(NVIC->ICER[0]); i++) {
|
|
NVIC->ICER[i]=0xFFFFFFFF;
|
|
NVIC->ICPR[i]=0xFFFFFFFF;
|
|
}
|
|
|
|
//__enable_irq();
|
|
|
|
// Activate the MSP, if the core is found to currently run with the PSP.
|
|
if( CONTROL_SPSEL_Msk & __get_CONTROL( ) )
|
|
{ /* MSP is not active */
|
|
__set_CONTROL( __get_CONTROL( ) & ~CONTROL_SPSEL_Msk ) ;
|
|
}
|
|
|
|
// Wait for every datas to be ready
|
|
__ISB();
|
|
__DSB();
|
|
|
|
// Remap the vector table address of the bootloader. Make sure the address meets the alignment requirements.
|
|
SCB->VTOR = (uint32_t)addr;
|
|
|
|
// Wait for every datas to be ready
|
|
__ISB();
|
|
__DSB();
|
|
|
|
// Relocate the main SP
|
|
__set_MSP( addr[0] ) ;
|
|
//__set_MSP(STM32F1xxx_BL_VECTOR_TABLE->__sp);
|
|
|
|
// Now, jump to the bootloader!
|
|
( ( void ( * )( void ) )addr[1] )( ) ;
|
|
//STM32F1xxx_BL_VECTOR_TABLE->__bl_call();
|
|
|
|
//BootJumpASM(((uint32_t*)STM32F1xxx_BL_ADDR)[0], ((uint32_t*)STM32F1xxx_BL_ADDR)[1]);
|
|
|
|
for (;;)
|
|
// We should never go here...
|
|
continue;
|
|
}
|
|
|
|
static void key_cb(char key, enum key_state state) {
|
|
uint8_t int_trig = 0;
|
|
|
|
if (keycb_start == 0) {
|
|
fifo_flush();
|
|
return;
|
|
}
|
|
|
|
if (reg_is_bit_set(REG_ID_INT_CFG, INT_KEY)) {
|
|
reg_set_bit(REG_ID_INT, INT_KEY);
|
|
int_trig = 1;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
DEBUG_UART_MSG("key: ");
|
|
DEBUG_UART_MSG2(key, 1, 0);
|
|
DEBUG_UART_MSG("\n\r");
|
|
DEBUG_UART_MSG("state: ");
|
|
DEBUG_UART_MSG2(state, 1, 0);
|
|
//DEBUG_UART_MSG(" blk: ");
|
|
//DEBUG_UART_MSG2(reg_get_value(REG_ID_BKL), 1, 0);
|
|
DEBUG_UART_MSG("\n\r");
|
|
#endif
|
|
|
|
const struct fifo_item item = {key, state};
|
|
if (!fifo_enqueue(item)) {
|
|
if (reg_is_bit_set(REG_ID_INT_CFG, INT_OVERFLOW)) {
|
|
reg_set_bit(REG_ID_INT, INT_OVERFLOW); // INT_OVERFLOW The interrupt was generated by FIFO overflow.
|
|
int_trig = 1;
|
|
}
|
|
|
|
if (reg_is_bit_set(REG_ID_CFG, CFG_OVERFLOW_ON)) fifo_enqueue_force(item);
|
|
}
|
|
|
|
#ifndef UART_PICO_INTERFACE
|
|
if (int_trig == 1)
|
|
LL_GPIO_ResetOutputPin(PICO_IRQ_GPIO_Port, PICO_IRQ_Pin); // Assert the IRQ signal to the pico
|
|
#endif
|
|
}
|
|
|
|
__STATIC_INLINE void hw_check_HP_presence(void) {
|
|
uint32_t v = LL_GPIO_IsInputPinSet(HP_DET_GPIO_Port, HP_DET_Pin);
|
|
|
|
if (v != head_phone_status) {
|
|
if (v != 0) {
|
|
#ifdef DEBUG
|
|
DEBUG_UART_MSG("HeadPhone inserted\n\r");
|
|
#endif
|
|
LL_GPIO_ResetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
|
|
} else {
|
|
#ifdef DEBUG
|
|
DEBUG_UART_MSG("HeadPhone removed\n\r");
|
|
#endif
|
|
LL_GPIO_SetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
|
|
}
|
|
|
|
head_phone_status = v;
|
|
}
|
|
}
|
|
|
|
__STATIC_INLINE void sync_bat(void) {
|
|
uint8_t pcnt;
|
|
if (AXP2101_getBatteryPercent(&pcnt) != HAL_OK)
|
|
return;
|
|
#ifdef DEBUG
|
|
DEBUG_UART_MSG("check_pmu_int: ");
|
|
DEBUG_UART_MSG2((uint32_t)pcnt, 1, 0);
|
|
DEBUG_UART_MSG("\n\r");
|
|
#endif
|
|
|
|
if (pcnt > 100) { // disconnect
|
|
pcnt = 0;
|
|
} else { // battery connected
|
|
if (AXP2101_isCharging())
|
|
pcnt |= (1 << 7);
|
|
low_bat();
|
|
}
|
|
|
|
reg_set_value(REG_ID_BAT, pcnt);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
__STATIC_INLINE void printPMU(void) {
|
|
DEBUG_UART_MSG("PMU isCharging: ");
|
|
if (AXP2101_isCharging())
|
|
DEBUG_UART_MSG("YES\n\r");
|
|
else
|
|
DEBUG_UART_MSG( "NO\n\r");
|
|
|
|
DEBUG_UART_MSG("PMU isDischarge: ");
|
|
if (AXP2101_isDischarge())
|
|
DEBUG_UART_MSG("YES\n\r");
|
|
else
|
|
DEBUG_UART_MSG( "NO\n\r");
|
|
|
|
DEBUG_UART_MSG("PMU isStandby: ");
|
|
if (AXP2101_isStandby())
|
|
DEBUG_UART_MSG("YES\n\r");
|
|
else
|
|
DEBUG_UART_MSG( "NO\n\r");
|
|
|
|
DEBUG_UART_MSG("PMU isVbusIn: ");
|
|
if (AXP2101_isVbusIn())
|
|
DEBUG_UART_MSG("YES\n\r");
|
|
else
|
|
DEBUG_UART_MSG( "NO\n\r");
|
|
|
|
DEBUG_UART_MSG("PMU isVbusGood: ");
|
|
if (AXP2101_isVbusGood())
|
|
DEBUG_UART_MSG("YES\n\r");
|
|
else
|
|
DEBUG_UART_MSG( "NO\n\r");
|
|
|
|
DEBUG_UART_MSG("PMU getChargerStatus: ");
|
|
uint8_t charge_status = AXP2101_getChargerStatus();
|
|
if (charge_status == XPOWERS_AXP2101_CHG_TRI_STATE) {
|
|
DEBUG_UART_MSG("tri_charge");
|
|
} else if (charge_status == XPOWERS_AXP2101_CHG_PRE_STATE) {
|
|
DEBUG_UART_MSG("pre_charge");
|
|
} else if (charge_status == XPOWERS_AXP2101_CHG_CC_STATE) {
|
|
DEBUG_UART_MSG("constant charge");
|
|
} else if (charge_status == XPOWERS_AXP2101_CHG_CV_STATE) {
|
|
DEBUG_UART_MSG("constant voltage");
|
|
} else if (charge_status == XPOWERS_AXP2101_CHG_DONE_STATE) {
|
|
DEBUG_UART_MSG("charge done");
|
|
} else if (charge_status == XPOWERS_AXP2101_CHG_STOP_STATE) {
|
|
DEBUG_UART_MSG("not charging");
|
|
}
|
|
|
|
DEBUG_UART_MSG("PMU getBattVoltage: ");
|
|
DEBUG_UART_MSG2(AXP2101_getBattVoltage(), 2, 0);
|
|
DEBUG_UART_MSG("mV\n\r");
|
|
DEBUG_UART_MSG("PMU getVbusVoltage: ");
|
|
DEBUG_UART_MSG2(AXP2101_getVbusVoltage(), 2, 0);
|
|
DEBUG_UART_MSG("mV\n\r");
|
|
DEBUG_UART_MSG("PMU getSystemVoltage: ");
|
|
DEBUG_UART_MSG2(AXP2101_getSystemVoltage(), 2, 0);
|
|
DEBUG_UART_MSG("mV\n\r");
|
|
|
|
// The battery percentage may be inaccurate at first use, the PMU will
|
|
// automatically learn the battery curve and will automatically calibrate the
|
|
// battery percentage after a charge and discharge cycle
|
|
if (AXP2101_isBatteryConnect()) {
|
|
DEBUG_UART_MSG("PMU getBatteryPercent: ");
|
|
uint8_t pcnt = 0;
|
|
AXP2101_getBatteryPercent(&pcnt);
|
|
DEBUG_UART_MSG2(pcnt, 1, 0);
|
|
DEBUG_UART_MSG("%\n\r");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
__STATIC_INLINE void check_pmu_int(void) {
|
|
if (!pmu_online)
|
|
return;
|
|
|
|
uint8_t pcnt;
|
|
|
|
if (uptime_ms() - pmu_check_counter > 20000) {
|
|
pmu_check_counter = uptime_ms(); // reset time
|
|
AXP2101_getBatteryPercent(&pcnt);
|
|
#ifdef DEBUG
|
|
DEBUG_UART_MSG("check_pmu_int: ");
|
|
DEBUG_UART_MSG2((uint32_t)pcnt, 1, 0);
|
|
DEBUG_UART_MSG("\n\r");
|
|
#endif
|
|
|
|
if (pcnt > 100) { // disconnect
|
|
pcnt = 0;
|
|
} else { // battery connected
|
|
if (AXP2101_isCharging())
|
|
pcnt |= (1 << 7);
|
|
low_bat();
|
|
}
|
|
|
|
reg_set_value(REG_ID_BAT,pcnt);
|
|
}
|
|
|
|
if (pmu_irq) {
|
|
pmu_irq = 0; // Reset interrupt flag
|
|
|
|
// Get PMU Interrupt Status Register
|
|
uint32_t status;
|
|
AXP2101_getIrqStatus(&status);
|
|
#ifdef DEBUG
|
|
DEBUG_UART_MSG("PMU IRQ status: ");
|
|
DEBUG_UART_MSG2(status, 4, 1);
|
|
DEBUG_UART_MSG("\n\r");
|
|
#endif
|
|
|
|
/*
|
|
// When the set low-voltage battery percentage warning threshold is reached,
|
|
// set the threshold through getLowBatWarnThreshold( 5% ~ 20% )
|
|
if (PMU.isDropWarningLevel2Irq()) {
|
|
Serial1.println("isDropWarningLevel2");
|
|
//report_bat();
|
|
}
|
|
*/
|
|
|
|
// When the set low-voltage battery percentage shutdown threshold is reached
|
|
// set the threshold through setLowBatShutdownThreshold()
|
|
//This is related to the battery charging and discharging logic. If you're not sure what you're doing, please don't modify it, as it could damage the battery.
|
|
if (AXP2101_isDropWarningLevel1Irq()) {
|
|
#ifdef DEBUG
|
|
DEBUG_UART_MSG("PMU: isDropWarningLevel1\n\r");
|
|
#endif
|
|
//report_bat();
|
|
//
|
|
AXP2101_shutdown();
|
|
}
|
|
/*if (PMU.isGaugeWdtTimeoutIrq()) {
|
|
Serial1.println("isWdtTimeout");
|
|
}
|
|
if (PMU.isBatChargerOverTemperatureIrq()) {
|
|
Serial1.println("isBatChargeOverTemperature");
|
|
}
|
|
if (PMU.isBatWorkOverTemperatureIrq()) {
|
|
Serial1.println("isBatWorkOverTemperature");
|
|
}
|
|
if (PMU.isBatWorkUnderTemperatureIrq()) {
|
|
Serial1.println("isBatWorkUnderTemperature");
|
|
}
|
|
if (PMU.isVbusInsertIrq()) {
|
|
Serial1.println("isVbusInsert");
|
|
}*/
|
|
if (AXP2101_isVbusRemoveIrq()) {
|
|
#ifdef DEBUG
|
|
DEBUG_UART_MSG("PMU: isVbusRemove\n\r");
|
|
#endif
|
|
stop_chg();
|
|
}
|
|
if (AXP2101_isBatInsertIrq()) {
|
|
AXP2101_getBatteryPercent(&pcnt);
|
|
if (pcnt > 100) { // disconnect
|
|
pcnt = 0;
|
|
} else { // battery connected
|
|
pcnt |= (1 << 7);
|
|
}
|
|
reg_set_value(REG_ID_BAT, pcnt);
|
|
#ifdef DEBUG
|
|
DEBUG_UART_MSG("PMU: isBatInsert\n\r");
|
|
#endif
|
|
}
|
|
if (AXP2101_isBatRemoveIrq()) {
|
|
reg_set_value(REG_ID_BAT,0);
|
|
#ifdef DEBUG
|
|
DEBUG_UART_MSG("PMU: isBatRemove\n\r");
|
|
#endif
|
|
stop_chg();
|
|
}
|
|
if (AXP2101_isPekeyShortPressIrq()) {
|
|
#ifdef DEBUG
|
|
DEBUG_UART_MSG("PMU: isPekeyShortPress\n\r");
|
|
|
|
uint8_t data[4] = {0};
|
|
AXP2101_readDataBuffer(data, XPOWERS_AXP2101_DATA_BUFFER_SIZE);
|
|
DEBUG_UART_MSG("PMU data buffer:\n\r");
|
|
DEBUG_UART_MSG2(data[0], 1, 0);
|
|
DEBUG_UART_MSG("\n\r");
|
|
DEBUG_UART_MSG2(data[1], 1, 0);
|
|
DEBUG_UART_MSG("\n\r");
|
|
DEBUG_UART_MSG2(data[2], 1, 0);
|
|
DEBUG_UART_MSG("\n\r");
|
|
DEBUG_UART_MSG2(data[3], 1, 0);
|
|
DEBUG_UART_MSG("\n\r");
|
|
|
|
printPMU();
|
|
#endif
|
|
// enterPmuSleep(); //TODO: implement sleep mode, RTC, etc.?
|
|
}
|
|
if (AXP2101_isPekeyLongPressIrq()) {
|
|
#ifdef DEBUG
|
|
DEBUG_UART_MSG("PMU: isPekeyLongPress\n\r");
|
|
#endif
|
|
//Serial1.println("write pmu data buffer .");
|
|
//uint8_t data[4] = {1, 2, 3, 4};
|
|
//PMU.writeDataBuffer(data, XPOWERS_AXP2101_DATA_BUFFER_SIZE);
|
|
|
|
reset_to_bootloader((uint32_t*)STM32F1xxx_BL_ADDR);
|
|
|
|
/*LL_GPIO_ResetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
|
|
LL_GPIO_ResetOutputPin(PICO_EN_GPIO_Port, PICO_EN_Pin);
|
|
AXP2101_setChargingLedMode(XPOWERS_CHG_LED_CTRL_CHG);
|
|
AXP2101_shutdown();*/
|
|
}
|
|
|
|
/*if (PMU.isPekeyNegativeIrq()) {
|
|
Serial1.println("isPekeyNegative");
|
|
}
|
|
if (PMU.isPekeyPositiveIrq()) {
|
|
Serial1.println("isPekeyPositive");
|
|
}
|
|
|
|
if (PMU.isLdoOverCurrentIrq()) {
|
|
Serial1.println("isLdoOverCurrentIrq");
|
|
}
|
|
if (PMU.isBatfetOverCurrentIrq()) {
|
|
Serial1.println("isBatfetOverCurrentIrq");
|
|
}*/
|
|
if (AXP2101_isBatChargeDoneIrq()) {
|
|
AXP2101_getBatteryPercent(&pcnt);
|
|
if (pcnt > 100) { // disconnect
|
|
pcnt = 0;
|
|
} else { // battery connected
|
|
pcnt |= (1 << 7);
|
|
}
|
|
reg_set_value(REG_ID_BAT,pcnt);
|
|
#ifdef DEBUG
|
|
DEBUG_UART_MSG("PMU: isBatChagerDone\n\r");
|
|
#endif
|
|
stop_chg();
|
|
}
|
|
if (AXP2101_isBatChargeStartIrq()) {
|
|
AXP2101_getBatteryPercent(&pcnt);
|
|
if (pcnt > 100) { // disconnect
|
|
pcnt = 0;
|
|
} else { // battery connected
|
|
pcnt |= (1 << 7);
|
|
}
|
|
reg_set_value(REG_ID_BAT,pcnt);
|
|
#ifdef DEBUG
|
|
DEBUG_UART_MSG("PMU: isBatChagerStart\n\r");
|
|
#endif
|
|
if(AXP2101_isBatteryConnect())
|
|
start_chg();
|
|
}
|
|
/*if (PMU.isBatDieOverTemperatureIrq()) {
|
|
Serial1.println("isBatDieOverTemperature");
|
|
}
|
|
if (PMU.isChagerOverTimeoutIrq()) {
|
|
Serial1.println("isChagerOverTimeout");
|
|
}
|
|
if (PMU.isBatOverVoltageIrq()) {
|
|
Serial1.println("isBatOverVoltage");
|
|
}*/
|
|
|
|
// Clear PMU Interrupt Status Register
|
|
AXP2101_clearIrqStatus();
|
|
}
|
|
}
|