JackCarterSmith fb2b213392
RTC simple registers interface
Only R/W time/date in BCD format (for read mode only)
2025-05-13 16:37:18 +02:00

873 lines
26 KiB
C

/**
******************************************************************************
*
* Copyright (c) 2025 C.ARE (JackCarterSmith).
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
*
******************************************************************************
*
* SYS_LED and COL_x are open-drain, output logic is inverted.
*
*/
#include "hal_interface.h"
#include "axp2101.h"
#include "backlight.h"
#include "batt.h"
#include "eeprom.h"
#include "fifo.h"
#include "keyboard.h"
#include "regs.h"
// Private define ------------------------------------------------------------
//#define DEFAULT_LCD_BL (205) // ~40% PWM@7.81kHz (9 bits resolution)
//#define DEFAULT_KBD_BL (20) // ~4% PWM@7.81kHz (9 bits resolution)
#define DEFAULT_LCD_BL (3) //step-4 (~50%)
#define DEFAULT_KBD_BL (0) //step-1 (0%)
#define DEFAULT_KBD_FREQ (KEY_POLL_TIME)
#define DEFAULT_KBD_DEB (KEY_HOLD_TIME)
#define I2CS_REARM_TIMEOUT 500
#define I2CS_W_BUFF_LEN 31+1 // The last one must be only a 0 value, TODO: another cleaner way?
#ifdef DEBUG
#define DEBUG_UART_MSG(msg) HAL_UART_Transmit(&huart1, (uint8_t*)msg, sizeof(msg)-1, 1000)
//#define DEBUG_UART_MSG2(d,s) HAL_UART_Transmit(&huart1, (uint8_t*)d, s, 200)
#define DEBUG_UART_MSG2(d,sz, swp) uart_rawdata_write(d,sz,swp)
#endif
// Private typedef -----------------------------------------------------------
enum i2cs_state {
//I2CS_STATE_HALT,
I2CS_STATE_IDLE,
I2CS_STATE_REG_REQUEST,
I2CS_STATE_REG_ANSWER
};
// Private variables ---------------------------------------------------------
extern I2C_HandleTypeDef hi2c1;
extern I2C_HandleTypeDef hi2c2;
extern RTC_HandleTypeDef hrtc;
extern TIM_HandleTypeDef htim1;
extern TIM_HandleTypeDef htim2;
extern TIM_HandleTypeDef htim3;
#ifdef DEBUG
extern UART_HandleTypeDef huart1;
static const uint8_t hexmap[] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'};
#endif
#ifdef UART_PICO_INTERFACE
extern UART_HandleTypeDef huart3;
#endif
volatile uint32_t systicks_counter = 0; // 1 MHz systick counter
static uint32_t pmu_check_counter = 0;
static uint32_t i2cs_rearm_counter = 0;
static uint8_t i2cs_r_buff[5];
static volatile uint8_t i2cs_r_idx = 0;
static uint8_t i2cs_w_buff[I2CS_W_BUFF_LEN];
static volatile uint8_t i2cs_w_idx = 0;
static volatile uint8_t i2cs_w_len = 0;
static enum i2cs_state i2cs_state = I2CS_STATE_IDLE;
static uint8_t keycb_start = 0;
static uint32_t head_phone_status = 0; // TODO: Combine status registers
volatile uint8_t pmu_irq = 0;
static uint32_t pmu_online = 0;
// Private variables ---------------------------------------------------------
//static void lock_cb(uint8_t caps_changed, uint8_t num_changed);
static void key_cb(char key, enum key_state state);
static void hw_check_HP_presence(void);
static void sync_bat(void);
#ifdef DEBUG
static void printPMU(void);
#endif
static void check_pmu_int(void);
static void i2cs_fill_buffer_RTC_date(uint8_t* date_buff);
static void i2cs_fill_buffer_RTC_time(uint8_t* time_buff);
static void i2cs_RTC_date_from_buffer(uint8_t* date_buff);
static void i2cs_RTC_time_from_buffer(uint8_t* time_buff);
extern void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
if (htim == &htim2) {
systicks_counter += 1;
}
}
extern void HAL_I2C_AddrCallback(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode) {
if (hi2c == &hi2c1) {
// I2C slave addr match error detection
if (AddrMatchCode != 0x3E) // 0x1F << 1
return;
if (TransferDirection == I2C_DIRECTION_TRANSMIT) {
if (i2cs_state == I2CS_STATE_IDLE) {
i2cs_state = I2CS_STATE_REG_REQUEST;
i2cs_r_idx = 0;
HAL_I2C_Slave_Sequential_Receive_IT(hi2c, i2cs_r_buff, 1, I2C_FIRST_FRAME); // This write the first received byte to i2cs_r_buff[0]
i2cs_rearm_counter = uptime_ms();
}
}
if (TransferDirection == I2C_DIRECTION_RECEIVE) {
if (i2cs_state == I2CS_STATE_REG_REQUEST) {
const uint8_t is_write = (uint8_t)(i2cs_r_buff[0] & (1 << 7));
const uint8_t reg = (uint8_t)(i2cs_r_buff[0] & ~(1 << 7));
i2cs_w_buff[0] = reg;
i2cs_w_len = 2;
if (reg == REG_ID_BKL) { // We wait an another byte for these registers
if (is_write)
lcd_backlight_update(i2cs_r_buff[1]);
i2cs_w_buff[1] = reg_get_value(REG_ID_BKL);
} else if (reg == REG_ID_BK2) {
if (is_write)
kbd_backlight_update(i2cs_r_buff[1]);
i2cs_w_buff[1] = reg_get_value(REG_ID_BK2);
} else if (reg == REG_ID_CFG) {
if (is_write)
reg_set_value(REG_ID_CFG, i2cs_r_buff[1]);
i2cs_w_buff[1] = reg_get_value(REG_ID_CFG);
} else if (reg == REG_ID_INT_CFG) {
if (is_write)
reg_set_value(REG_ID_INT_CFG, i2cs_r_buff[1]);
i2cs_w_buff[1] = reg_get_value(REG_ID_INT_CFG);
} else if (reg == REG_ID_DEB) {
if (is_write) {
keyboard_set_hold_period(*((uint16_t*)&i2cs_r_buff[1]));
reg_set_value(REG_ID_DEB, 0); // Trig async flag for EEPROM saving
}
*((uint16_t*)&i2cs_w_buff[1]) = keyboard_get_hold_period();
i2cs_w_len = 3;
} else if (reg == REG_ID_FRQ) {
if (is_write)
reg_set_value(REG_ID_FRQ, i2cs_r_buff[1]);
i2cs_w_buff[1] = reg_get_value(REG_ID_FRQ);
} else if (reg == REG_ID_FIF) {
struct fifo_item item = {0};
fifo_dequeue(&item);
i2cs_w_buff[0] = item.state;
i2cs_w_buff[1] = item.key;
} else if (reg == REG_ID_INT) {
i2cs_w_buff[1] = reg_get_value(REG_ID_INT);
LL_GPIO_SetOutputPin(PICO_IRQ_GPIO_Port, PICO_IRQ_Pin); // De-assert the IRQ signal
} else if (reg == REG_ID_VER) {
i2cs_w_buff[1] = reg_get_value(REG_ID_VER);
} else if (reg == REG_ID_TYP) {
i2cs_w_buff[1] = reg_get_value(REG_ID_TYP);
} else if (reg == REG_ID_BAT) {
i2cs_w_buff[1] = reg_get_value(REG_ID_BAT);
} else if (reg == REG_ID_RTC_DATE) {
if (is_write)
i2cs_RTC_date_from_buffer(&i2cs_r_buff[1]);
i2cs_fill_buffer_RTC_date(&i2cs_w_buff[1]);
i2cs_w_len = 5;
} else if (reg == REG_ID_RTC_TIME) {
if (is_write)
i2cs_RTC_time_from_buffer(&i2cs_r_buff[1]);
i2cs_fill_buffer_RTC_time(&i2cs_w_buff[1]);
i2cs_w_len = 4;
} else if (reg == REG_ID_KEY) {
i2cs_w_buff[0] = fifo_count();
i2cs_w_buff[0] |= keyboard_get_numlock() ? KEY_NUMLOCK : 0x00;
i2cs_w_buff[0] |= keyboard_get_capslock() ? KEY_CAPSLOCK : 0x00;
} else if (reg == REG_ID_C64_MTX) {
//memcpy(write_buffer + 1, io_matrix, sizeof(io_matrix));
*((uint32_t*)(&i2cs_w_buff[1]) + 0) = *((uint32_t*)(io_matrix) + 0);
*((uint32_t*)(&i2cs_w_buff[1]) + 1) = *((uint32_t*)(io_matrix) + 1);
i2cs_w_buff[9] = io_matrix[8];
i2cs_w_len = 10;
} else if (reg == REG_ID_C64_JS) {
i2cs_w_buff[1] = js_bits;
} else if (reg == REG_ID_RST) {
if (is_write)
reg_set_value(REG_ID_RST, 1);
i2cs_w_buff[1] = reg_get_value(REG_ID_RST);
} else if (reg == REG_ID_RST_PICO) {
if (is_write)
reg_set_value(REG_ID_RST_PICO, 1);
i2cs_w_buff[1] = reg_get_value(REG_ID_RST_PICO);
} else if (reg == REG_ID_SHTDW) {
if (is_write) {
reg_set_value(REG_ID_SHTDW, 1);
return; // Ignore answer, everything will be shutdown
}
i2cs_w_buff[1] = 0;
} else {
i2cs_w_buff[0] = 0;
i2cs_w_buff[1] = 0;
}
i2cs_state = I2CS_STATE_REG_ANSWER;
i2cs_w_idx = 0;
HAL_I2C_Slave_Sequential_Transmit_IT(hi2c, i2cs_w_buff, i2cs_w_len, I2C_FIRST_AND_LAST_FRAME);
i2cs_rearm_counter = uptime_ms();
}
}
}
}
extern void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *hi2c) {
if (hi2c == &hi2c1) {
i2cs_r_idx++;
if (i2cs_state == I2CS_STATE_REG_REQUEST) {
const uint8_t is_write = (uint8_t)(i2cs_r_buff[0] & (1 << 7));
const uint8_t reg = (uint8_t)(i2cs_r_buff[0] & ~(1 << 7));
uint8_t bytes_needed = 0;
// Check for another mandatories bytes depending on register requested
if (reg == REG_ID_BKL ||
reg == REG_ID_BK2 ||
reg == REG_ID_CFG ||
reg == REG_ID_INT_CFG ||
reg == REG_ID_FRQ) {
if (is_write)
bytes_needed = 1;
} else if (reg == REG_ID_DEB) {
if (is_write)
bytes_needed = 2;
} else if (reg == REG_ID_RTC_TIME ||
reg == REG_ID_RTC_DATE) {
if (is_write)
bytes_needed = 4;
}
if (bytes_needed > 0)
HAL_I2C_Slave_Sequential_Receive_IT(hi2c, i2cs_r_buff + i2cs_r_idx, bytes_needed, I2C_NEXT_FRAME); // This write the second or more received byte to i2cs_r_buff[1]
}
}
}
extern void HAL_I2C_ListenCpltCallback (I2C_HandleTypeDef *hi2c) {
if (hi2c == &hi2c1) {
if (i2cs_state == I2CS_STATE_REG_ANSWER)
i2cs_state = I2CS_STATE_IDLE;
HAL_I2C_EnableListen_IT(hi2c);
}
}
extern void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c) {
if (hi2c == &hi2c1)
if (HAL_I2C_GetError(hi2c) != HAL_I2C_ERROR_AF)
Error_Handler();
// Actually this will trigger the watchdog and restart the system... That can ruin the day of the user.
}
#ifdef DEBUG
void uart_rawdata_write(uint32_t c, size_t s, uint8_t swap) {
uint8_t r[4];
uint32_t v = swap ? __REV(c) : c;
HAL_UART_Transmit(&huart1, (uint8_t*)"0x", 2, 40);
for (size_t i = 0; i < s; i++) {
uint8_t index = swap ? (uint8_t)(4-s+i) : (uint8_t)i;
r[0] = hexmap[(((uint8_t*)&v)[index] & 0xF0) >> 4];
r[1] = hexmap[((uint8_t*)&v)[index] & 0x0F];
HAL_UART_Transmit(&huart1, r, 2, 40);
}
}
#endif
/**
* @brief The application entry point.
* @retval int
*/
int main(void) {
uint32_t result = 0;
// Initialize the STM32 HAL system
result = HAL_Interface_init();
if (result != HAL_OK)
Error_Handler();
LL_GPIO_ResetOutputPin(SYS_LED_GPIO_Port, SYS_LED_Pin); // I'm alive!
// Start the systick timer
if (HAL_TIM_Base_Start_IT(&htim2) != HAL_OK)
Error_Handler();
// EEPROM emulation init
if (EEPROM_Init() != EEPROM_SUCCESS)
Error_Handler();
#ifdef DEBUG
DEBUG_UART_MSG("EEPROM init\n\r");
#endif
// Check EEPROM first run
EEPROM_ReadVariable(EEPROM_VAR_ID, (EEPROM_Value*)&result);
if ((uint16_t)result != 0xCA1C) {
EEPROM_WriteVariable(EEPROM_VAR_BCKL, (EEPROM_Value)(uint16_t)((DEFAULT_LCD_BL << 8) | DEFAULT_KBD_BL), EEPROM_SIZE16);
EEPROM_WriteVariable(EEPROM_VAR_KBD, (EEPROM_Value)(uint32_t)((DEFAULT_KBD_DEB << 16) | DEFAULT_KBD_FREQ), EEPROM_SIZE32);
EEPROM_WriteVariable(EEPROM_VAR_CFG, (EEPROM_Value)(uint16_t)(((CFG_USE_MODS | CFG_REPORT_MODS) << 8) | (INT_OVERFLOW | INT_KEY)), EEPROM_SIZE16);
EEPROM_WriteVariable(EEPROM_VAR_ID, (EEPROM_Value)(uint16_t)0xCA1C, EEPROM_SIZE16);
#ifdef DEBUG
DEBUG_UART_MSG("EEPROM first start!\n\r");
#endif
}
// I2C-Pico interface registers
reg_init();
HAL_Delay(10);
if (HAL_I2C_EnableListen_IT(&hi2c1) != HAL_OK)
Error_Handler();
// Check for AXP2101 is accessible on secondary I2C bus
result = 0;
HAL_I2C_Mem_Read(&hi2c2, 0x68, XPOWERS_AXP2101_IC_TYPE, 1, (uint8_t*)&result, 1, 60);
if (result == XPOWERS_AXP2101_CHIP_ID) {
#ifdef DEBUG
DEBUG_UART_MSG("PMU ID: ");
DEBUG_UART_MSG2((uint32_t)result, 1, 0);
DEBUG_UART_MSG("\n\r");
#endif
pmu_online = 1;
}
#ifdef DEBUG
else {
DEBUG_UART_MSG("PMU not online!\n\r");
}
#endif
// Start LCD and KBD backlight PWM
lcd_backlight_off();
if (HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1) != HAL_OK)
Error_Handler();
kbd_backlight_on();
if (HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_3) != HAL_OK)
Error_Handler();
#ifdef DEBUG
DEBUG_UART_MSG("Bckl params: ");
DEBUG_UART_MSG2(((uint32_t)result >> 8), 1, 1);
DEBUG_UART_MSG(", ");
DEBUG_UART_MSG2(((uint32_t)result & 0xFF), 1, 1);
DEBUG_UART_MSG("\n\r");
#endif
keyboard_set_key_callback(key_cb);
// Enable PICO power
LL_GPIO_SetOutputPin(PICO_EN_GPIO_Port, PICO_EN_Pin);
#ifdef DEBUG
DEBUG_UART_MSG("Pico started\n\r");
#endif
// Enable speaker Amp. power
LL_GPIO_SetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
HAL_Delay(500);
lcd_backlight_on();
// It is necessary to disable the detection function of the TS pin on the
// board without the battery temperature detection function, otherwise it will
// cause abnormal charging
AXP2101_setSysPowerDownVoltage(2800);
AXP2101_disableTSPinMeasure();
// AXP2101_enableTemperatureMeasure();
AXP2101_enableBattDetection();
AXP2101_enableVbusVoltageMeasure();
AXP2101_enableBattVoltageMeasure();
AXP2101_enableSystemVoltageMeasure();
AXP2101_setChargingLedMode(XPOWERS_CHG_LED_CTRL_CHG);
AXP2101_disableIRQ(XPOWERS_AXP2101_ALL_IRQ);
AXP2101_clearIrqStatus();
AXP2101_enableIRQ(XPOWERS_AXP2101_BAT_INSERT_IRQ |
XPOWERS_AXP2101_BAT_REMOVE_IRQ | // BATTERY
XPOWERS_AXP2101_VBUS_INSERT_IRQ |
XPOWERS_AXP2101_VBUS_REMOVE_IRQ | // VBUS
XPOWERS_AXP2101_PKEY_SHORT_IRQ |
XPOWERS_AXP2101_PKEY_LONG_IRQ | // POWER KEY
XPOWERS_AXP2101_BAT_CHG_DONE_IRQ |
XPOWERS_AXP2101_BAT_CHG_START_IRQ // CHARGE
);
// setLowBatWarnThreshold Range: 5% ~ 20%
// The following data is obtained from actual testing , Please see the description below for the test method.
// 20% ~= 3.7v
// 15% ~= 3.6v
// 10% ~= 3.55V
// 5% ~= 3.5V
// 1% ~= 3.4V
AXP2101_setLowBatWarnThreshold(20); // Set to trigger interrupt when reaching 20%
// setLowBatShutdownThreshold Range: 0% ~ 15%
// The following data is obtained from actual testing , Please see the description below for the test method.
// 15% ~= 3.6v
// 10% ~= 3.55V
// 5% ~= 3.5V
// 1% ~= 3.4V
AXP2101_setLowBatShutdownThreshold(5); //This is related to the battery charging and discharging logic. If you're not sure what you're doing, please don't modify it, as it could damage the battery.
keycb_start = 1;
sync_bat();
low_bat();
while (1) {
LL_IWDG_ReloadCounter(IWDG);
// Re-arm I2CS in case of lost master signal
if (i2cs_state != I2CS_STATE_IDLE && ((uptime_ms() - i2cs_rearm_counter) > I2CS_REARM_TIMEOUT))
i2cs_state = I2CS_STATE_IDLE;
reg_sync();
check_pmu_int();
keyboard_process();
hw_check_HP_presence();
// Check internal status
if (reg_get_value(REG_ID_SHTDW) == 1) { // Nominal full system shutdown as requested from I2C bus
reg_set_value(REG_ID_SHTDW, 0);
LL_GPIO_ResetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
LL_GPIO_ResetOutputPin(PICO_EN_GPIO_Port, PICO_EN_Pin);
AXP2101_setChargingLedMode(XPOWERS_CHG_LED_CTRL_CHG);
AXP2101_shutdown();
} else if (reg_get_value(REG_ID_RST) == 1) { // Try to reset only the STM32
reg_set_value(REG_ID_RST, 0);
HAL_Delay(200); // Wait for final I2C answer
if (HAL_I2C_DisableListen_IT(&hi2c1) != HAL_OK)
Error_Handler();
LL_GPIO_ResetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
LL_GPIO_ResetOutputPin(PICO_EN_GPIO_Port, PICO_EN_Pin);
NVIC_SystemReset();
} else if (reg_get_value(REG_ID_RST_PICO) == 1) { // Reset only the Pico
reg_set_value(REG_ID_RST_PICO, 0);
HAL_Delay(200); // Wait for final I2C answer
if (HAL_I2C_DisableListen_IT(&hi2c1) != HAL_OK)
Error_Handler();
LL_GPIO_ResetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
LL_GPIO_ResetOutputPin(PICO_EN_GPIO_Port, PICO_EN_Pin);
HAL_Delay(200); // No need to use keyboard, so a simple delay should suffice
LL_GPIO_SetOutputPin(PICO_EN_GPIO_Port, PICO_EN_Pin);
LL_GPIO_SetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
if (HAL_I2C_EnableListen_IT(&hi2c1) != HAL_OK)
Error_Handler();
}
}
}
/*
static void lock_cb(uint8_t caps_changed, uint8_t num_changed) {
uint8_t int_trig = 0;
if (caps_changed && reg_is_bit_set(REG_ID_CFG, CFG_CAPSLOCK_INT)) {
reg_set_bit(REG_ID_INT, INT_CAPSLOCK);
int_trig = 1;
}
if (num_changed && reg_is_bit_set(REG_ID_CFG, CFG_NUMLOCK_INT)) {
reg_set_bit(REG_ID_INT, INT_NUMLOCK);
int_trig = 1;
}
#ifndef UART_PICO_INTERFACE
if (int_trig == 1)
LL_GPIO_ResetOutputPin(PICO_IRQ_GPIO_Port, PICO_IRQ_Pin); // Assert the IRQ signal to the pico
#endif
}
*/
static void key_cb(char key, enum key_state state) {
uint8_t int_trig = 0;
if (keycb_start == 0) {
fifo_flush();
return;
}
if (reg_is_bit_set(REG_ID_INT_CFG, INT_KEY)) {
reg_set_bit(REG_ID_INT, INT_KEY);
int_trig = 1;
}
#ifdef DEBUG
DEBUG_UART_MSG("key: ");
DEBUG_UART_MSG2(key, 1, 0);
DEBUG_UART_MSG("\n\r");
DEBUG_UART_MSG("state: ");
DEBUG_UART_MSG2(state, 1, 0);
//DEBUG_UART_MSG(" blk: ");
//DEBUG_UART_MSG2(reg_get_value(REG_ID_BKL), 1, 0);
DEBUG_UART_MSG("\n\r");
#endif
const struct fifo_item item = {key, state};
if (!fifo_enqueue(item)) {
if (reg_is_bit_set(REG_ID_INT_CFG, INT_OVERFLOW)) {
reg_set_bit(REG_ID_INT, INT_OVERFLOW); // INT_OVERFLOW The interrupt was generated by FIFO overflow.
int_trig = 1;
}
if (reg_is_bit_set(REG_ID_CFG, CFG_OVERFLOW_ON)) fifo_enqueue_force(item);
}
#ifndef UART_PICO_INTERFACE
if (int_trig == 1)
LL_GPIO_ResetOutputPin(PICO_IRQ_GPIO_Port, PICO_IRQ_Pin); // Assert the IRQ signal to the pico
#endif
}
__STATIC_INLINE void hw_check_HP_presence(void) {
uint32_t v = LL_GPIO_IsInputPinSet(HP_DET_GPIO_Port, HP_DET_Pin);
if (v != head_phone_status) {
if (v != 0) {
#ifdef DEBUG
DEBUG_UART_MSG("HeadPhone inserted\n\r");
#endif
LL_GPIO_ResetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
} else {
#ifdef DEBUG
DEBUG_UART_MSG("HeadPhone removed\n\r");
#endif
LL_GPIO_SetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
}
head_phone_status = v;
}
}
__STATIC_INLINE void sync_bat(void) {
uint8_t pcnt;
if (AXP2101_getBatteryPercent(&pcnt) != HAL_OK)
return;
#ifdef DEBUG
DEBUG_UART_MSG("check_pmu_int: ");
DEBUG_UART_MSG2((uint32_t)pcnt, 1, 0);
DEBUG_UART_MSG("\n\r");
#endif
if (pcnt > 100) { // disconnect
pcnt = 0;
} else { // battery connected
if (AXP2101_isCharging())
pcnt |= (1 << 7);
low_bat();
}
reg_set_value(REG_ID_BAT, pcnt);
}
#ifdef DEBUG
__STATIC_INLINE void printPMU(void) {
DEBUG_UART_MSG("PMU isCharging: ");
if (AXP2101_isCharging())
DEBUG_UART_MSG("YES\n\r");
else
DEBUG_UART_MSG( "NO\n\r");
DEBUG_UART_MSG("PMU isDischarge: ");
if (AXP2101_isDischarge())
DEBUG_UART_MSG("YES\n\r");
else
DEBUG_UART_MSG( "NO\n\r");
DEBUG_UART_MSG("PMU isStandby: ");
if (AXP2101_isStandby())
DEBUG_UART_MSG("YES\n\r");
else
DEBUG_UART_MSG( "NO\n\r");
DEBUG_UART_MSG("PMU isVbusIn: ");
if (AXP2101_isVbusIn())
DEBUG_UART_MSG("YES\n\r");
else
DEBUG_UART_MSG( "NO\n\r");
DEBUG_UART_MSG("PMU isVbusGood: ");
if (AXP2101_isVbusGood())
DEBUG_UART_MSG("YES\n\r");
else
DEBUG_UART_MSG( "NO\n\r");
DEBUG_UART_MSG("PMU getChargerStatus: ");
uint8_t charge_status = AXP2101_getChargerStatus();
if (charge_status == XPOWERS_AXP2101_CHG_TRI_STATE) {
DEBUG_UART_MSG("tri_charge");
} else if (charge_status == XPOWERS_AXP2101_CHG_PRE_STATE) {
DEBUG_UART_MSG("pre_charge");
} else if (charge_status == XPOWERS_AXP2101_CHG_CC_STATE) {
DEBUG_UART_MSG("constant charge");
} else if (charge_status == XPOWERS_AXP2101_CHG_CV_STATE) {
DEBUG_UART_MSG("constant voltage");
} else if (charge_status == XPOWERS_AXP2101_CHG_DONE_STATE) {
DEBUG_UART_MSG("charge done");
} else if (charge_status == XPOWERS_AXP2101_CHG_STOP_STATE) {
DEBUG_UART_MSG("not charging");
}
DEBUG_UART_MSG("PMU getBattVoltage: ");
DEBUG_UART_MSG2(AXP2101_getBattVoltage(), 2, 0);
DEBUG_UART_MSG("mV\n\r");
DEBUG_UART_MSG("PMU getVbusVoltage: ");
DEBUG_UART_MSG2(AXP2101_getVbusVoltage(), 2, 0);
DEBUG_UART_MSG("mV\n\r");
DEBUG_UART_MSG("PMU getSystemVoltage: ");
DEBUG_UART_MSG2(AXP2101_getSystemVoltage(), 2, 0);
DEBUG_UART_MSG("mV\n\r");
// The battery percentage may be inaccurate at first use, the PMU will
// automatically learn the battery curve and will automatically calibrate the
// battery percentage after a charge and discharge cycle
if (AXP2101_isBatteryConnect()) {
DEBUG_UART_MSG("PMU getBatteryPercent: ");
uint8_t pcnt = 0;
AXP2101_getBatteryPercent(&pcnt);
DEBUG_UART_MSG2(pcnt, 1, 0);
DEBUG_UART_MSG("%\n\r");
}
}
#endif
__STATIC_INLINE void check_pmu_int(void) {
if (!pmu_online)
return;
uint8_t pcnt;
if (uptime_ms() - pmu_check_counter > 20000) {
pmu_check_counter = uptime_ms(); // reset time
AXP2101_getBatteryPercent(&pcnt);
#ifdef DEBUG
DEBUG_UART_MSG("check_pmu_int: ");
DEBUG_UART_MSG2((uint32_t)pcnt, 1, 0);
DEBUG_UART_MSG("\n\r");
#endif
if (pcnt > 100) { // disconnect
pcnt = 0;
} else { // battery connected
if (AXP2101_isCharging())
pcnt |= (1 << 7);
low_bat();
}
reg_set_value(REG_ID_BAT,pcnt);
}
if (pmu_irq) {
pmu_irq = 0; // Reset interrupt flag
// Get PMU Interrupt Status Register
uint32_t status;
AXP2101_getIrqStatus(&status);
#ifdef DEBUG
DEBUG_UART_MSG("PMU IRQ status: ");
DEBUG_UART_MSG2(status, 4, 1);
DEBUG_UART_MSG("\n\r");
#endif
/*
// When the set low-voltage battery percentage warning threshold is reached,
// set the threshold through getLowBatWarnThreshold( 5% ~ 20% )
if (PMU.isDropWarningLevel2Irq()) {
Serial1.println("isDropWarningLevel2");
//report_bat();
}
*/
// When the set low-voltage battery percentage shutdown threshold is reached
// set the threshold through setLowBatShutdownThreshold()
//This is related to the battery charging and discharging logic. If you're not sure what you're doing, please don't modify it, as it could damage the battery.
if (AXP2101_isDropWarningLevel1Irq()) {
#ifdef DEBUG
DEBUG_UART_MSG("PMU: isDropWarningLevel1\n\r");
#endif
//report_bat();
//
AXP2101_shutdown();
}
/*if (PMU.isGaugeWdtTimeoutIrq()) {
Serial1.println("isWdtTimeout");
}
if (PMU.isBatChargerOverTemperatureIrq()) {
Serial1.println("isBatChargeOverTemperature");
}
if (PMU.isBatWorkOverTemperatureIrq()) {
Serial1.println("isBatWorkOverTemperature");
}
if (PMU.isBatWorkUnderTemperatureIrq()) {
Serial1.println("isBatWorkUnderTemperature");
}
if (PMU.isVbusInsertIrq()) {
Serial1.println("isVbusInsert");
}*/
if (AXP2101_isVbusRemoveIrq()) {
#ifdef DEBUG
DEBUG_UART_MSG("PMU: isVbusRemove\n\r");
#endif
stop_chg();
}
if (AXP2101_isBatInsertIrq()) {
AXP2101_getBatteryPercent(&pcnt);
if (pcnt > 100) { // disconnect
pcnt = 0;
} else { // battery connected
pcnt |= (1 << 7);
}
reg_set_value(REG_ID_BAT, pcnt);
#ifdef DEBUG
DEBUG_UART_MSG("PMU: isBatInsert\n\r");
#endif
}
if (AXP2101_isBatRemoveIrq()) {
reg_set_value(REG_ID_BAT,0);
#ifdef DEBUG
DEBUG_UART_MSG("PMU: isBatRemove\n\r");
#endif
stop_chg();
}
if (AXP2101_isPekeyShortPressIrq()) {
#ifdef DEBUG
DEBUG_UART_MSG("PMU: isPekeyShortPress\n\r");
uint8_t data[4] = {0};
AXP2101_readDataBuffer(data, XPOWERS_AXP2101_DATA_BUFFER_SIZE);
DEBUG_UART_MSG("PMU data buffer:\n\r");
DEBUG_UART_MSG2(data[0], 1, 0);
DEBUG_UART_MSG("\n\r");
DEBUG_UART_MSG2(data[1], 1, 0);
DEBUG_UART_MSG("\n\r");
DEBUG_UART_MSG2(data[2], 1, 0);
DEBUG_UART_MSG("\n\r");
DEBUG_UART_MSG2(data[3], 1, 0);
DEBUG_UART_MSG("\n\r");
printPMU();
#endif
// enterPmuSleep(); //TODO: implement sleep mode, RTC, etc.?
}
if (AXP2101_isPekeyLongPressIrq()) {
#ifdef DEBUG
DEBUG_UART_MSG("PMU: isPekeyLongPress\n\r");
#endif
//Serial1.println("write pmu data buffer .");
//uint8_t data[4] = {1, 2, 3, 4};
//PMU.writeDataBuffer(data, XPOWERS_AXP2101_DATA_BUFFER_SIZE);
LL_GPIO_ResetOutputPin(SP_AMP_EN_GPIO_Port, SP_AMP_EN_Pin);
LL_GPIO_ResetOutputPin(PICO_EN_GPIO_Port, PICO_EN_Pin);
AXP2101_setChargingLedMode(XPOWERS_CHG_LED_CTRL_CHG);
AXP2101_shutdown();
}
/*if (PMU.isPekeyNegativeIrq()) {
Serial1.println("isPekeyNegative");
}
if (PMU.isPekeyPositiveIrq()) {
Serial1.println("isPekeyPositive");
}
if (PMU.isLdoOverCurrentIrq()) {
Serial1.println("isLdoOverCurrentIrq");
}
if (PMU.isBatfetOverCurrentIrq()) {
Serial1.println("isBatfetOverCurrentIrq");
}*/
if (AXP2101_isBatChargeDoneIrq()) {
AXP2101_getBatteryPercent(&pcnt);
if (pcnt > 100) { // disconnect
pcnt = 0;
} else { // battery connected
pcnt |= (1 << 7);
}
reg_set_value(REG_ID_BAT,pcnt);
#ifdef DEBUG
DEBUG_UART_MSG("PMU: isBatChagerDone\n\r");
#endif
stop_chg();
}
if (AXP2101_isBatChargeStartIrq()) {
AXP2101_getBatteryPercent(&pcnt);
if (pcnt > 100) { // disconnect
pcnt = 0;
} else { // battery connected
pcnt |= (1 << 7);
}
reg_set_value(REG_ID_BAT,pcnt);
#ifdef DEBUG
DEBUG_UART_MSG("PMU: isBatChagerStart\n\r");
#endif
if(AXP2101_isBatteryConnect())
start_chg();
}
/*if (PMU.isBatDieOverTemperatureIrq()) {
Serial1.println("isBatDieOverTemperature");
}
if (PMU.isChagerOverTimeoutIrq()) {
Serial1.println("isChagerOverTimeout");
}
if (PMU.isBatOverVoltageIrq()) {
Serial1.println("isBatOverVoltage");
}*/
// Clear PMU Interrupt Status Register
AXP2101_clearIrqStatus();
}
}
__STATIC_INLINE void i2cs_fill_buffer_RTC_date(uint8_t* date_buff) {
RTC_DateTypeDef data_s = {0};
HAL_RTC_GetDate(&hrtc, &data_s, RTC_FORMAT_BCD);
date_buff[0] = data_s.Year;
date_buff[1] = data_s.Month;
date_buff[2] = data_s.Date;
date_buff[3] = data_s.WeekDay;
}
__STATIC_INLINE void i2cs_fill_buffer_RTC_time(uint8_t* time_buff) {
RTC_TimeTypeDef time_s = {0};
HAL_RTC_GetTime(&hrtc, &time_s, RTC_FORMAT_BCD);
time_buff[0] = time_s.Hours;
time_buff[1] = time_s.Minutes;
time_buff[2] = time_s.Seconds;
}
__STATIC_INLINE void i2cs_RTC_date_from_buffer(uint8_t* date_buff) {
RTC_DateTypeDef data_s = {0};
data_s.Year = date_buff[0] <= 99? date_buff[0] : 99;
data_s.Month = (date_buff[1] > 0 && date_buff[1] <= 12)? date_buff[1] : 12;
data_s.Date = (date_buff[2] > 0 && date_buff[2] <= 99)? date_buff[2] : 99;
//data_s.WeekDay - this element is automatically recomputed
HAL_RTC_SetDate(&hrtc, &data_s, RTC_FORMAT_BIN);
}
__STATIC_INLINE void i2cs_RTC_time_from_buffer(uint8_t* time_buff) {
RTC_TimeTypeDef time_s = {0};
time_s.Hours = time_buff[0] <= 23 ? time_buff[0] : 23;
time_s.Minutes = time_buff[1] <= 59 ? time_buff[1] : 59;
time_s.Seconds = time_buff[2] <= 59 ? time_buff[2] : 59;
HAL_RTC_SetTime(&hrtc, &time_s, RTC_FORMAT_BIN);
}