l4 is pages, not sectors, so update apis to be consistent. (other
families use page/sector as defined in the reference manual)
Make sure that pages on the second bank can also be erased. Use the
same style in use for f2/4/7 for sector numbers across banks.
All the "f" type flash parts have an EOP flag, even if it's in different
bit positions. Add a header for this common functionality, and move
it's implementation to the existing common file.
Turns out, there's lots of common code for flash. Pull up prefetch
on/off to start with, as there's only a single bit name different.
Pull up the definitions of common API functions too, starting with
flash_set_ws. Even if the implementations are different, things that
meant to be the same, should be defined centrally.
Only applied to STM32 doc trees at present.
Instead of declaring a group for "STM32blah" in the doc-blah.h files,
and then trying to put all the common+specific peripheral code into
those groups, (which is what led to the stub doxygen holder empty .c
files) Just use a standard name like "Peripheral APIS" and place
everything into that.
Demonstrated by converting ADC and USART peripherals, which is
definitely not complete, but it shows how to make things less magical,
and less prone to copy/paste errors. Now, you can copy/paste and it
will do the right thing, because everyone uses the same group names.
This is also how to unify the mix of "STM32blah->Periphblah" and _also_
the dangling "periph_file" modules in doxygen, it merges them together
properly, as they're intended to be really.
split spi stuff in three part:
- v1 : basic spi peripheral
- v1_frf : v1 spi with frf mode additional bit in spi_cr2 / spi_sr
- v2 : spi with variable datasize, fifo and other fancy stuff.
v1 maps to f1 chips
v1_frf to f2, f4 and l0,l1
v2 to f0, f3 and l4
This breaks spi_master_init API for v2 devices : function prototype from
common spi header used to be abused, with DFF bit reused for CRCL bit.
New v2 spi_master_init does not handle anymore CRCL bits, as it does not
usually mess with other crc configuration.
stm32f0, l3, l4 are currently sharing the same duplicated header, and
stm32l0 uses the same peripheral. Stop copy-pasting stuff and centralize
definitions into a iwdg_common_v2.h header.
rcc_osc_bypass_enable and rcc_osc_bypass_disable have been copy/pasted
around for the last time! There's a compile bit to check for L0/L1, but
otherwise this is just code duplication for no gain.
Originally suggested in https://github.com/libopencm3/libopencm3/pull/399
At least provide macros for each family that allows easy masking of the
full set of reset reason flags. Trying to provide a function that
provides these in random upper bits seems unclear at best.
According to reference manuals both l0 and l4 have "v2" i2c peripheral.
This patch adds i2c support to l0 and l4 using previously unified "v2" i2c
headers and implementation.
No real hardware has been tested so far. Only compilation tests for both
libopencm3 and libopencm3-examples for all stm32 families.
Signed-off-by: Sergey Matyukevich <geomatsi@gmail.com>
Some parts used HSICLK, some used HSI. Most used NOCLK, f3 used
DISABLED. Try and move all to the shorter, simpler forms, instead of
having mixed defines for different targets for the same thing. Just
because the bits themselves are different doesn't mean we should make it
more difficult for users to port code.
Start providing async routines for all blocking routines, to make it
easier to use libopencm3 in some RTOS environments. This is not in
anyway intended to be complete, this just covers a single blocking
routine, rcc_wait_for_osc_ready. Documentation added to the top level,
and provided for all stm32 families.
L4 and F3 actually have the same bits to write in the same order, but F3 hides
the name of the deep power down bit. Keep the like that for now, but there's a
standard API for enabling and disabling the regulator.